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The end of Moore’s Law has ushered in a diversity of hardware not seen in decades. Operating system (and system software)

portability is accordingly becoming increasingly critical. Simultaneously, there has been tremendous progress in program

synthesis. We set out to explore the feasibility of using modern program synthesis to generate the machine-dependent parts

of an operating system. Our ultimate goal is to generate new ports automatically from descriptions of new machines.

One of the issues involved is writing speciications, both for machine-dependent operating system functionality and for

instruction set architectures. We designed two domain-speciic languages: Alewife for machine-independent speciications

of machine-dependent operating system functionality and Cassiopea for describing instruction set architecture semantics.

Automated porting also requires an implementation. We developed a toolchain that, given an Alewife speciication and a

Cassiopea machine description, specializes the machine-independent speciication to the target instruction set architecture

and synthesizes an implementation in assembly language with a customized symbolic execution engine. Using this approach,

we demonstrate successful synthesis of a total of 140 OS components from two pre-existing OSes for four real hardware

platforms. We also developed several optimization methods for OS-related assembly synthesis to improve scalability.

The efectiveness of our languages and ability to synthesize code for all 140 speciications is evidence of the feasibility of

program synthesis for machine-dependent OS code. However, many research challenges remain; we also discuss the beneits

and limitations of our synthesis-based approach to automated OS porting.
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Fig. 1. Porting an operating system (top box in dark gray) to an architecture (botombox in dark gray) requires re-implementing

the machine-dependent parts (middle boxes in light gray).

1 INTRODUCTION

Porting an operating system (OS) to a new machine architecture is expensive.1 This expense manifests in many
ways: 1) direct monetary cost; 2) time to market penalties; and 3) opportunity cost for experienced kernel
developers who could be handling more important issues, such as new technology or security [Chen et al. 2020;
Ghavamnia et al. 2020; Shinde et al. 2020; Song et al. 2020]. Moreover, the end of Moore’s Law has ushered in an
era of new hardware [Hennessy and Patterson 2019], which requires new system software. This suggests that
porting system software is an increasingly important challenge.
Meanwhile, the convergence of two other trends creates an opportunity. First, some machine architecture

vendors are now producing formal speciications of their instruction set architectures (ISAs) [Armstrong et al.
2019]. Second, program synthesis techniques [Bodik et al. 2010; Bornholt and Torlak 2017; Feser et al. 2015;
Gulwani 2011; Polozov and Gulwani 2015; Van Gefen et al. 2020], and especially veriication-based synthesis
such as Counterexample-Guided Inductive Synthesis (CEGIS) [Alur et al. 2013; Solar-Lezama et al. 2008, 2006],
have reached a point where we can expect to synthesize small but useful program chunks in reasonable time.
The nature of OS architecture and of veriication-based program synthesis suggests that a synthesis-based

approach might reduce porting costs and/or provide an eicient way to produce veriied operating system
ports. Most OSes are structured to be portable as shown in Figure 1; they have clearly delineated machine-inde-
pendent (top box in dark gray) and machine-dependent parts (middle boxes in light gray) [Custer 1992; Love
2010; McKusick et al. 1996; Rashid et al. 1987; Spier et al. 1973]. Porting an OS requires re-implementing the
machine-dependent parts (light gray boxes in Figure 1), not performing deep structural reorganization. Further,
some of the machine-dependent parts are written in C; other parts are written in assembler. We focus on those
parts written in assembler (typically thousands of lines per port)2, as those require in-depth knowledge of the
assembly language for the processor to which the system is being ported3.

1For example, NetBSD’s AArch64 (64-bit ARM) port took approximately 300 commits by approximately 20 people (just in the kernel,

not including user-level material or toolchain work); this was spread over two and a half years between serious work beginning and

irst release in 2020. See https://anonhg.NetBSD.org/src/ile/tip/sys/arch/aarch64. Note that bugs are still being found; see for example

https://gnats.NetBSD.org/56264.
2https://anonhg.NetBSD.org/src/ile/tip/sys/arch/
3 Though the C code also requires knowledge of the processor, it does not, by deinition, include operations that cannot be expressed in C,

such as control register accesses, or code that must not destroy registers that are ordinarily available to the compiler, such as trap handlers.

The assembly code covers such material; it is therefore more challenging and is the proper irst step for assessing feasibility.
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The machine-independent parts of the OS use the machine-dependent parts via a machine-independent
interface whose functions each implement a well-deined machine-independent operation, such as turning on
interrupts or saving a trapframe. Overall, these assembly language machine-dependent portions exhibit two
important characteristics. First, they are usually small and relatively isolated from one another; they decompose

readily into small independent pieces of code, which each exhibit simple control low. Each independent piece tends
to be either implemented in a single function or combined with related pieces into a sequence of semantically
meaningful steps. Second, each machine-dependent portion implements a well-deined machine-independent
operation, regardless of the target architecture; while details may vary, each piece can be given a machine-in-

dependent speciication. This uniformity of speciication is precisely the deinition of the boundary between
machine-independent code and machine-dependent code.
Taken together, these characteristics outline an approach for synthesizing the machine-dependent parts of

an operating system. Operating system developers provide functional speciications of the machine-depen-
dent parts of their operating system independent of any underlying hardware (white speciication boxes in
Figure 1). Computer architects produce a functional speciication of their platform, independent of any operating
system (white formal machine description box in Figure 1). By combining machine-independent OS speciications
with hardware speciications, a synthesis engine produces the appropriate implementation (light gray boxes in
Figure 1). Thus, given� operating systems and � hardware platforms, one writes� + � speciications rather
than implementing� × � ports. In our approach we use full functional speciications, rather than, for example,
partial speciications based on input/output samples.
CEGIS-based synthesis relies on veriication to determine when an implementation satisies its speciication,

so components constructed in this manner are correct by construction. Such an approach ofers an alternative to
building veriied operating system ports from the ground up, which can take many person years [Klein et al.
2009].
This approach presents myriad interesting research questions, spanning many diferent areas of computer

science.

(1) What are the requirements for a language that expresses machine-dependent functionality in a machine-in-
dependent way?

(2) What are the requirements for a language that describes hardware in a way amenable to synthesis? Must
one model the entire ISA to synthesize machine-dependent OS code?

(3) Some parts of an operating system are not only machine-dependent but machine-speciic, in that they
handle abstractions or structures that do not exist on other machines, such as segment tables on x86.
How do we address parts of the operating system that are machine-speciic and, thus, cannot be given a
machine-independent speciication?

(4) How well do modern synthesis techniques work in this domain?
(5) What additional tooling or support is needed to integrate the results of program synthesis into a complete

working system?
(6) How well does a synthesized system perform?
(7) Does program synthesis make the porting process faster and/or easier?

This paper proposes and evaluates solutions for the irst two research questions and touches upon the fourth.
We also designed and built an entire ecosystem in pursuit of the ifth point. A detailed description of that larger
ecosystem is beyond the scope of this paper, although we highlight several ways in which the work discussed
here leverages it. The other research questions are either current research or intended future work, but this area
is wide open, and we invite others to build upon our work and explore alternative approaches.
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To tackle these questions we developed a system to explore synthesis of machine-dependent parts of an OS.
Two domain speciic languages are central to our approach. Alewife is a language for machine-independent
speciications of machine-dependent OS functionality (white speciication boxes in Figure 1), and Cassiopea4 is a
register transfer language (RTL) style machine description language (white formal machine description box in
Figure 1).
Alewife expresses machine-independent speciications of machine-dependent functionality by providing an

abstract machine to hide details. In Alewife, an OS designer declares abstract predicates (or other functions)
and abstract machine state. These describe observable properties of a machine without providing an exact
implementation. For example, one might declare the abstract predicate interrupts_are_on to indicate whether
interrupts are on or from_usermode to indicate whether a pending trap came from user mode or kernel mode. One
might also declare crt0_argv_reg to be the register that argv is placed in by the kernel at program startup. These
abstract declarations describe concepts that are independent of any particular machine, but can be directly related
to the exact machine-dependent state and functionality of each machine. Then, using these abstractions, an OS
designer can provide machine-independent pre- and postcondition speciications. For example, the postcondition
of a block that is meant to turn interrupts on might require interrupts_are_on() == true.
This formulation leads to a beneicial separation of concerns. OS developers can write machine-independent

code in terms of the machine-dependent functionality exposed via Alewife speciications. Chip designers can
write machine descriptions in Cassiopea, possibly supplying deinitions of commonly used abstract declarations,
such as interrupt state. A programmer porting an OS to a new machine architecture need only specify how the
Alewife abstract declarations used by the OS are deined in terms of the state of the target machine.

Given an Alewife input ile, a Cassiopea description of an architecture, and a mapping from Alewife abstract
declarations to the state of the target machine, our Alewife compiler turns the Alewife machine-independent
speciications into machine-dependent speciications. Our synthesis engine takes these machine-dependent
speciications and synthesizes assembly language programs that satisfy the speciications.

We evaluate our languages and tools via 35 synthesis use cases from eight complete machine-dependent
procedures in two pre-existing OSes: Barrelish [Baumann et al. 2009] and the OS/161 instructional OS [Holland
et al. 2002], deployed on four real machine architectures: 32-bit MIPS, 32-bit ARM, 32-bit RISC-V and x86_64. Our
goal in this evaluation is not (yet) to produce a complete port of either OS, but instead, to show that synthesizing
the code for such a port is feasible. For this reason we have selected a variety of code examples with a variety of
purposes. Each example is taken from the machine-dependent code for one port of one of the OSes; we synthesize
comparable code for each of the other target architectures for which we have written machine speciications. We
successfully lower all 35 machine-independent speciications for each architecture with the Alewife compiler,
generating 140 machine-dependent speciications in total for synthesis. We validate the eicacy of the synthesis
engine by synthesizing and verifying assembly code for all 140 speciications; all synthesis executions inished
within a half-hour timeout with optimizations enabled in our synthesis engine.

In summary, the contributions of this paper are:

• A novel approach to synthesizing the machine-dependent portions of an OS.
• The Alewife language, which allows speciication of machine-dependent OS components in a machine-in-
dependent fashion.
• The Cassiopea language, which allows describing real instruction set architectures to enable synthesis of
OS functionality.
• An assembly language synthesis engine and the Alewife compiler, which transforms machine-independent
speciications into machine-dependent speciications.
• Several optimization techniques that improve scalability for assembly language synthesis.

4Cassiopea is named for a jellyish that features symbiotic photosynthetic algae, which is for some reason spelled without the customary ’i’.
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• Identiication and discussion of the challenges and payofs of our synthesis-based approach to automated
OS porting.

In the next section, we begin with a brief overview of our approach to program synthesis, named Aquarium,
after the ecosystem we built for producing synthesized ports of machine-dependent components of an operating
system. We then discuss our languages in detail (Sections 3 and 4) and describe the mechanism for connecting
them (Section 5). In Section 6, we describe the implementation of the Alewife compiler and synthesis engine. Then,
in Section 7, we present use cases, validation, and experimental results. Section 8 contains further discussion,
including when program synthesis is not appropriate for implementation of machine-dependent OS components
(and a brief description of other tools we created to address these situations); Section 9 discusses related work,
and Section 10 concludes.

2 OVERVIEW: PROGRAM SYNTHESIS IN AQUARIUM

Aquarium is a collection of tools to automatically construct the machine-dependent parts of an OS. In this work,
we focus on the languages we developed for 1) describing machine-dependent OS functionality in a machine-
independent fashion and 2) specifying a processor’s semantics, and on using modern program synthesis in the
assembly language realm, where all state is global and data is untyped.

Figure 2 presents an overview of Aquarium’s four-step approach to OS synthesis:
Step 1: Writing a Machine Independent Speciication. An OS developer writes an Alewife speciication for some

piece of OS functionality A . Alewife reasons about machine-dependent functionality in an abstract machine
(Section 3).

Step 2: Writing Machine Descriptions. A computer architect produces a machine model B written in Cassiopea,
which models the ISA semantics at the assembly language level (Section 4).

Step 3: Lowering to Machine-Dependent Speciications. To specialize a machine-dependent speciication for

synthesis, Aquarium applies lowering iles C that instantiate the machine-independent Alewife abstractions for

the target architecture. The Alewife compiler D performs the lowering process, which takes a Cassiopea machine
description, an Alewife speciication, and the corresponding lowering ile to generate the machine-dependent

speciication E for that architecture (Section 5).
Step 4: Synthesis and Veriication. Given the Cassiopea machine description and the machine-dependent

speciication, Aquarium uses the Cassiopea synthesis engine F to synthesize a satisfying sequence of assembly

instructions G and verify it against the speciication (Section 6).

A Small Example of Aquarium Program Synthesis

As a running example, we use an excerpt from the exception handling code of the Barrelish operating
system [Baumann et al. 2009]. Figure 3 shows the original ARMv7 Barrelish code (which we call disp_check).
The code sets the return value in r0 to 0 or 1 depending on the relationship between the value in the memory
location [r2,#88] and the contents of the special register lr. The value in r0 is used in code that follows this
block. Since this code is written in assembly, its implementation is machine-dependent. We discuss this code in
more detail and present its machine-independent speciication in the sections that follow.

3 WRITING MACHINE-INDEPENDENT SPECIFICATIONS IN ALEWIFE

Each Alewife ile ( A in Figure 2) provides a machine-independent speciication for a single piece of machine-de-
pendent functionality in terms of its efects on an abstract machine. This allows speciications to reason about
the underlying machine state that is relevant to machine-independent code without having to know machine-
dependent details. We assume that these speciications are written by OS designers with general knowledge of
machines, but not in-depth knowledge of all the architectures to which their system will eventually be ported.

ACM Trans. Program. Lang. Syst.
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Fig. 2. Aquarium program synthesis workflow. Given a machine-independent Alewife specification A (writen by OS

designers), a Cassiopea machine description B for a specific architecture (writen by chip designers), and an Alewife-

Cassiopea lowering file C , the Alewife compiler D generates a machine-dependent Cassiopea specification E for that

architecture. The Cassiopea synthesis engine F uses the machine description and the machine-dependent specification to

synthesize a satisfying sequence of assembly instructions, verifies them against the specification, and translates them into

real assembly programs G .

1 ldr r0, [r2, #88]

2 cmp lr, r0

3 movhs r0, #0x00000000

4 movlo r0, #0x00000001

Fig. 3. ARMv7 disp_check assembly program example from the Barrelfish operating system.

We call the unit of machine-dependent functionality in an Alewife ile a block. A block is a sequence of assembly
instructions that has a single entry point, no backward branches to code in the block, and optionally a single
branch to code outside the block. The speciication consists of four parts: 1) preconditions, 2) postconditions,
3) let-bindings, and 4) frame conditions. The precondition describes the initial state of the abstract machine
immediately before the block executes. The generated code may assume that the precondition is true and can
behave in arbitrary or undeined ways if the precondition is false. The postcondition describes the inal state
of the abstract machine immediately after the block executes. Provided that the precondition was true, correct
generated code (in our case a sequence of assembly instructions) must guarantee that the postcondition is true
after it executes. Let-bindings are evaluated against the initial state and allow the postcondition to refer to the
initial state. Frame conditions specify what machine state may be modiied. An Alewife ile may include other
iles, enabling reuse of declarations shared across multiple OSes.

The rest of this section describes the mechanisms by which Alewife permits machine-independent speciication
of machine-dependent functionality; Alewife syntax and semantics appear in Appendixes A.5 and A.6.

Figure 4 shows the Alewife speciication for Barrelish’s disp_check. This block compares the saved program
counter where an exception occurred (previously placed in pc_reg) to the upper bound of the critical region in
which the exception is re-entrant and requires special handling. That bound is ordinarily stored in the dispatcher

ACM Trans. Program. Lang. Syst.
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structure.5 The dispatcher structure resides in DispMem and contains space to save registers; thus, both the
number of ields in it and their sizes are machine-dependent and must be abstracted. get_crit_ptr takes the
base address of the dispatcher structure as an argument and adds in the ofset of the proper ield in the structure.
We make get_crit_ptr a function, rather than adding in an abstract ofset directly, for illustrative purposes.

The precondition (line 13) indicates that register disp_reg (from line 4) must contain a pointer to the base
of the region DispMem, which is deined on line 8. The postcondition (line 14-15) ensures that the register
disp_area_reg contains a bitvector whose value is 1 if the variable crit (line 12) is true or a bitvector whose
value is 0 if crit is false. The variable crit is a boolean condition that stores the comparison result between a
register (pc_reg) and the contents of the memory location computed by the function get_crit_ptr.

Memory model. Alewife memory regions, xmem, have inite lengths with types N1 bit N2 len N3 ref; such a
region contains N2 elements, each of which is an N1-bit value; pointers into the region are N3-bit values. N1, N2,
and N3 here can be either concrete lengths or abstract symbolic constants. For example in Figure 4, the type of
the DispMem region has three symbolic constants: it has DISP_MAX locations (DISP_MAX len), each containing a
bitvector with length wordsize (wordsize bit), whose pointers are wordsize-bit values (wordsize ref). We
discuss the concretization of these abstract values in Section 5.

Memory is addressed by pointers, which are pairs of a memory region and ofset; a pointer to the �th element
of memory region xmem is represented by the pair (xmem, �). Memory regions do not overlap; that is, given two
memory regions xmem1 and xmem2, a pointer (xmem1, _) can never alias a pointer (xmem2, _). This “swiss-cheesež
memorymodel is inspired by DieHard’s miniheaps [Berger and Zorn 2006] and array separation logic [Brotherston
et al. 2017] and relects the C standard. Memory regions are second-class; pointers may be passed around, but
memory regions may not and every pointer must explicitly name a speciic memory region.

A memory region can optionally have a label, which is the symbol used to refer to its base address in assembly
language text. Note that while this symbol refers to a constant, the value of the constant is not known until the
code is assembled and linked into the inal output program; or in the case of typical shared libraries or position-
independent executables, not until program execution. In general, position-independent code and ordinary
code must use diferent instructions to refer to labels. For this reason, and because Barrelish links its kernel as
position-independent code, we attach an access type to each label.
It is allowable to declare a memory region with 0 len, which means that we model only the existence of

the region but not its internal workings. OS designers generally do not need to know the synthesis algorithm
when writing these Alewife speciications. However, limiting memory regions to their minimum size improves
performance, since adding extra state slows down synthesis.

Abstract Declarations and Abstract Functions

Values imported with require (lines 2-6 in Figure 4), such as the register pc_reg and integer wordsize, are
examples of abstract declarations, allowing an Alewife speciication to omit details of how an implementation
represents and stores data. This is the key to making Alewife speciications machine-independent. Such identiiers
must be deined elsewhere for each target machine; we bind the abstract declarations and their corresponding ma-
chine-dependent deinitions in a later step, before conducting synthesis. Alewife types (the complete speciication
is in Section A.6) can contain symbolic bit lengths and abstract type identiiers, which will be specialized to
diferent bit lengths and Cassiopea types by Cassiopea machine descriptions and machine-dependent lowerings

5Barrelish decomposes its kernel into a machine-dependent CPU driver and a machine independent, user-space Monitor. The CPU driver

“performs dispatch and fast local messaging between processes on the corež [Baumann et al. 2009]. The dispatcher structure belongs to the

CPU driver and is analogous to a process structure or process control block; among other things it contains register save areas. Thus, it is

both OS-speciic, as it is particular to the Barrelish architecture, and machine-dependent, as the size of the structure varies with the pointer

size, word size, and number of registers of the architecture.

ACM Trans. Program. Lang. Syst.
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1 require type word

2 require value wordsize: int

3 require value pc_reg: wordsize reg

4 require value disp_reg: wordsize reg

5 require value disp_area_reg: wordsize reg

6 require value DISP_MAX: int

7 require function get_crit_ptr: (word) word

8 region DispMem: wordsize bit DISP_MAX len wordsize ref

9 lower-with: disp_defs may_use_flags disp_scratch

10
11 let crit_ptr: wordsize ptr = get_crit_ptr([DispMem, 0])

12 let crit : bool = *pc_reg b< fetch(crit_ptr, wordsize)

13 pre: *disp_reg == [DispMem, 0]

14 post: if crit then *disp_area_reg == (1: wordsize vec)

15 else *disp_area_reg == (0: wordsize vec)

Fig. 4. Alewife specification for disp_check.

before synthesis takes place. For example, in Figure 4, the value wordsize, imported with require in line 2, is
used to deine the dispatcher memory region DispMem on line 8. A machine description, written in Cassiopea,
provides the deinition for wordsize appropriate for a speciic machine. Similarly, the size of the (machine-depen-
dent) dispatcher structure is speciied using an abstract integer DISP_MAX. We discuss details of the concretization
of these abstract states and functions in Section 4 and Section 5, with examples from two diferent architectures
(MIPS and ARMv7) whose relevant Cassiopea descriptions appear in Figure 5 and the lowering iles in Figure 6.

Alewife speciications also use abstract functions. For example, line 7 of Figure 4 declares a function get_crit_ptr.
This example does not refer to machine state, but others might. The predicate interrupts_are_on mentioned
earlier, for example, will.

The keyword lower-with (e.g., line 9 in Figure 4) is used to name modules from which to get the machine-de-
pendent instantiations of the abstract deinitions. In this case, there are three: deinitions related to disp_check,
permission to change the processor lags on machines that have them, and scratch register assignments for this
block. These are called lowering modules and are discussed in more detail in Section 5.

Frame Conditions

An Alewife speciication may optionally provide frame conditions that permit a block to modify additional
machine state (registers or register ields and memory). By default, synthesized code can modify only machine
state explicitly mentioned in the postcondition. All other state elements’ inal values must equal their initial
values. The modify frame condition identiies additional (abstract) state elements that may be modiied (e.g.,
scratch registers). As we discuss in Section 5, lowering modules can also add frame conditions. In practice this is
where most frame conditions come from. The frame conditions are more than synthesis heuristics that help to
prune the search space; they are a useful shorthand to materially afect the speciication.
The default behavior is desirable: most blocks should not modify state irrelevant to their postcondition.

However, some computations require scratch registers. Additionally, it is sometimes necessary to read a register
and write the same value back. For example, many control registers contain multiple ields but can only be read
and written as a unit; changing one ield requires reading the whole register, updating the desired ield, and
writing the whole register back. It is important both to permit these accesses and to ensure that the other ields

ACM Trans. Program. Lang. Syst.
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are not arbitrarily modiied. On MIPS, for example, bit 0 of the status register controls the interrupt state; but the
register contains many other ields where arbitrary changes can have unwanted consequences, such as switching
between 32-bit and 64-bit mode. A correct MIPS implementation of code to enable or disable interrupts must be
able to write to the bit controlling 64-bit mode, but must not change it.

Since we do not prohibit writes entirely, in theory, the synthesizer can generate programs that change registers
in arbitrary ways and then restore their initial value. In practice, this is not an issue, because our synthesis
technique preferentially produces smaller programs, excluding programs with redundant operations. Another
potential problem is that the synthesizer is obliged to waste time considering and ruling out programs that make
unwanted changes. We address this in the implementation by gating registers (Section 6.3.2) that are irrelevant to
the speciication; this removes them entirely from consideration.

Limitations of Alewife

Alewife speciications are based on the premise that the machine-dependent code in an operating system is
made up of machine-dependent instantiations of machine-independent constructs; this allows the bulk of the
speciication to be machine-independent with relatively minor parts substituted on a per-machine basis. In
practice, this is largely, but not entirely, true. Some machine-dependent code in operating systems is not just
machine-dependent but machine-speciic: it handles concepts that do not exist on other machines, e.g., segment
tables on x86. These concepts primarily arise in code that is called directly by the machine (such as trap handlers
and the kernel startup code) rather than by the machine-independent part of the OS. It is possible to specify such
code in Alewife, but only in a degenerate form, where the entire speciication is abstracted into a single pre- and
postcondition pair in the lowering ile.

4 WRITING MACHINE DESCRIPTIONS IN CASSIOPEA

To verify or synthesize programs against a particular machine, Aquarium uses a model of the ISA semantics

written in the Cassiopea language ( B in Figure 2). This section presents an overview of the language, highlighting
those design features that improve the eiciency of symbolic execution and synthesis. The complete syntax and
semantics appear in Appendices A.2 and A.3.
A Cassiopea machine description provides an executable model of an ISA, declaring machine state, such as

registers and memory, and deining operations that describe its assembly instructions. Cassiopea is a typed,
interpreted language. In the following discussions we refer to conditions detected during the initial typechecking
pass as “staticž and those that are not as “runtime errorsž. The symbolic execution that occurs during synthesis
(see Section 6) explores all execution paths and treats any runtime errors as conditions to avoid; that is, no output
program should ever produce a runtime error.

Throughout the rest of this section, we use excerpts from two of our Cassiopea machine descriptions (Figure 5:
MIPS (Listing A) and ARMv7 (Listing B)) as running examples. Unless otherwise stated, line numbers refer to
lines in both listings from this igure.

Register model. Registers in Cassiopea have types of the form C reg, which indicates that a register can hold
C-bit values (line 4). Registers are irst-class values and can be passed as arguments to functions and operations.
Each register has the text form used in the machine’s assembly language associated with it. The synthesis engine
uses this to produce the synthesized assembly code; it allows working with non-identiier register names, such as
%eax on x86.

Memory model. Cassiopea uses the same “swiss-cheesež memory model as Alewife does (described in Section 3).
However, unlike Alewife, Cassiopea memory regions, xmem, have inite, statically known lengths. Unbounded or
variable-lengthmemory regions do not typically appear in assembly-languagemachine-dependent OS components.

ACM Trans. Program. Lang. Syst.
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Listing A. Cassiopea MIPS machine description

1 (* bitvector and register types *)

2 let wordsize: int = 32

3 type word = 32 bit

4 type register = 32 reg

5 (* general purpose registers *)

6 letstate r0: register

7 ...

8 (* control flags: cp0 $12: Status *)

9 letstate control cp0_12_ie: 1 reg ...

10 (* assembly text representation *)

11 let r0.txt = "$0" ...

12 (* machine invariant *)

13 invariant: *r0 == 0x00000000

14 (* instructions *)

15 defop SLTU rd:register rs:register

16 rt:register {

17 txt = format("sltu {1}, {2}, {3}",

18 rd.txt, rs.txt, rt.txt),

19 sem = [ (* check the validity

20 of each operand *)

21 assert (valid_gpreg(rd));

22 assert (valid_gpreg(rs));

23 assert (valid_gpreg(rt));

24 assert (rs != rt);

25 assert (rt != r0);

26 if rd == r0 then skip

27 else if ( *rs b< *rt ) then

28 *rd <- 0x00000001

29 else *rd <- 0x00000000 ]}

30 defop LW rd:register rs:register

31 imm:16 bit {

32 txt = format("lw {1}, {2}({3})",

33 rd.txt, imm.dec, rs.txt),

34 sem = [ ... (* check validity *)

35 if rd == r0 then skip

36 else let addr: word =

37 *rs b+ sign_extend(imm)

38 in *rd <- fetch[addr, 32] ]}

39 ...

Listing B. Cassiopea ARMv7 machine description

1 (* bitvector and register types *)

2 let wordsize: int = 32

3 type word = 32 bit

4 type register = 32 reg

5 (* general purpose registers *)

6 letstate r0: register

7 ...

8 (* control flags: CPSR *)

9 letstate control Z: 1 reg

10 ...

11 (* assembly text representation *)

12 let r0.txt = "r0"

13 ...

14 (* instructions *)

15 defop MOV_imm rd:register ri:4 bit

16 vi:8 bit cd:4 bit {

17 txt = let wi:word = rotimm(ri, vi) in

18 format("mov{1} {2}, #{3}",

19 armcc(cd), rd.txt, wi.hex),

20 sem = [ (* check validity *)

21 assert (valid_cond(cond));

22 assert (valid_gpreg(rd));

23 assert (valid_rotimm(ri, vi));

24 if checkcond(cd) then

25 *rd <- rotimm(ri, vi)

26 else skip ]}

27 defop LDR_imm rd:register rn:register

28 imm:12 bit cd:4 bit {

29 txt = format("ldr{1} {2}, [{3},#{4}]",

30 armcc(cd), rd.txt, rn.txt, imm.dec),

31 sem = [

32 ... (* check validity *)

33 if checkcond(cd) then

34 assert (is_ptr( *rn ));

35 let addr: word =

36 *rn b+ zero_extend(32, imm)

37 in *rd <- fetch[addr, 32]

38 else skip ]}

39 ...

Fig. 5. Excerpts from Cassiopea machine descriptions. Lines of the form (* ... *) are comments.
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Cassiopea memory regions have types of the form C1 bit C2 len C3 ref, where C1, C2, and C3 must be concrete
constants. As in Alewife, labels have an access type that indicates whether references should be position-
independent; instruction deinitions that use labels can query or assert about the access type, so that the synthesis
engine produces the appropriate code. Note that most memory regions appear in Alewife speciications and not
in machine descriptions: we provide a programmer’s view of the machine, so the memory regions available are
the ones associated with the code at hand and not the machine’s entire memory space.

Bitvectors and pointers. In a typical ISA, all values are bitvectors and can be used by any operation. In contrast,
as in typed assembly language [Morrisett et al. 1999] and the Compcert backend [Leroy 2009], Cassiopea
distinguishes between inite bitvector constants and pointers into memory regions. The distinction is not
statically checked, however; the type C bit includes both C-length bitvectors and pointers into memory regions
of type C1 bit C2 len C ref. It is a runtime error to apply bitvector operations to pointer values and vice versa,
though we overload some operations to allow limited pointer arithmetic. We deliberately omit the ability to
convert between pointer values and bitvectors, since we do not model absolute memory addresses. This model
simpliies reasoning about the semantics of programs, since they cannot create pointers to arbitrary regions. It is
also a runtime error to make unaligned or out-of-bounds accesses to memory.

Machine state. All machine state is either registers or memory. Such state is global in scope and declared using
letstate. Registers and memory can contain only bitvectors and pointers. Cassiopea code can manipulate
integers, booleans, and registers to deine instruction semantics, but these values cannot be stored directly in
machine state.

We refer to the state of a machine M with the notation ΣM, which is a pair (�, �). � is a map from registers to
values of bitvector type, and � is a map from pointers to values of bitvector type.

Our example in Figure 5 declares several pieces of machine state. The general-purpose register r0 for both
MIPS and ARM appears on line 6. Its assembly output text is speciied by binding r0.txt, which appears on line
11 in Figure 5A and line 12 in Figure 5B. We also show one control register for each machine: cp0_12_ie in MIPS
(line 9 in Figure 5A) and the Z lag in ARM (line 9 in Figure 5B). (Control registers vary widely across machines.)
There are no memory regions in the example because, as discussed previously, memory regions normally arise in
program speciications and not in the machine model itself (see Figure 4 line 8).

Operations and programs. Machine state in Cassiopea is manipulated by operations. These are typically a single
assembly instruction but may represent a group of instruction variants and/or a short sequence. In the examples,
lines 15ś29 and 30ś38 of Figure 5A and lines 15ś26 and 27ś38 of Figure 5B deine operations with defop.

Each operation deinition has two parts: txt is an expression that constructs the assembly text representation
of the operation, and sem is a Cassiopea statement deining the operation’s full concrete semantics in terms of the
machine state. In the deinition, most operations check the validity of each operand irst. The MIPS instructions
shown are SLTU (unsigned set less than) and LW (load word). The ARM instructions shown are MOV_imm (move
immediate to register) and LDR_imm (load with immediate value ofset).
Borrowing from JitSynth [Van Gefen et al. 2020], an operation is a pair (��,T), where �� is an opcode, and

T is a map from argument name to type, which can include registers, booleans, concrete bitvectors, and labels.
(When used as an argument to an instruction that accepts labels, a label provides a pointer to the irst entry in its
memory region.) Each operation deines a set of instructions (��, v) where v is a map from argument name to
value, where for each argument � , v(�) is of type T(�). For a machine M, we denote its set of instructions as IM.

Cassiopea machine descriptions deine the semantics of an instruction as a partial function (partial due to the
possibility of runtime errors) from a machine state to a new machine state accompanied by a branching state:

⟦(��, v)⟧M : ΣM ⇀ ΣM × (N ∪ {·, ext})
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The branching state indicates the destination of a branch instruction. Operations in Cassiopea may only branch
forward, so the branching state indicates that execution should proceed with either the next instruction (·), an
external assembler label (ext), or the instruction after skipping � instructions forward (N) (where � should be at
least 1).
A program is a series of instructions. We deine the result of running a program � (a list of instructions) on

a machine state (�, �) ∈ ΣM using a partial function ���M : PM × ΣM ⇀ ΣM × ���� where PM is the set of
programs for machine M and the result includes a boolean representing the branchto value, indicating whether
the program jumped to the special external assembler label.

���M (�, (�, �)) =





(�, �, � ����) � = ���

(� ′, � ′, ����) ⟦ℎ��� (�)⟧M (�, �) = (�
′, � ′, ext)

���(���� (�, 1), (� ′, � ′)) ⟦ℎ��� (�)⟧M (�, �) = (�
′, � ′, ·)

���(���� (�, �), (� ′, � ′)) ⟦ℎ��� (�)⟧M (�, �) = (�
′, � ′, �) ∧ � ≤ ���(�)

⊥ ⟦ℎ��� (�)⟧M (�, �) = ⊥

⊥ ⟦ℎ��� (�)⟧M (�, �) = (�
′, � ′, �) ∧ � > ���(�)

The function ℎ��� (ℓ) is the irst element of a list ℓ , ���� (ℓ, �) is the tail of the list ℓ after removing � elements,
and ���(ℓ) is the length of the list ℓ .

Other elements. Cassiopea iles may deine type aliases, values, functions, and procedures and use them in the
deinitions of operations. (Functions are pure; procedures may alter machine state.) Both the MIPS and ARM
descriptions deine word as a type of 32 bits (line 3) and register as the type of 32-bit registers (line 4). The
value wordsize, discussed in Section 3, is also speciied as 32 on both 32-bit MIPS and 32-bit ARMv7 (line 2)
and 64 for x86_64 (not shown). Function valid_gpreg checks whether the given operand is a general purpose
register (line 21-23 in Figure 5A and line 22 in Figure 5B). This prevents generating code that tries to use special
registers or control registers that happen to be the same size as general-purpose registers and thus have the
correct type to pass as operands. LW in MIPS uses a function sign_extend (line 37 in Figure 5A, deinition not
shown), which implements sign extension on bitvectors. LDR_imm in ARM uses a function zero_extend (line 36
in Figure 5B), which implements (unsigned) zero-extension. Common functions and procedures, such as those
used for bitvector manipulation, can be deined in separate iles and reused by inclusion in diferent machine
descriptions.

It is also possible to deine machine invariants. These are predicates that must hold true before and after block
execution. The invariant statement in line 13 in Figure 5A declares that the value in register r0 is always zero.

Execution model. Cassiopea is not Turing-complete; machine models are inite-state and evaluation of Cassiopea
functions, procedures, and operations always terminates. We deliberately restrict Cassiopea’s ability to model
control low: Cassiopea operations may only branch forward, so assembly snippets modeled in Cassiopea are
loop-free. The semantics of Cassiopea do not include clocks and timers, concurrency, hazards, or weak memory
models. The minimalistic design of Cassiopea allows symbolic execution to generate complete logical descriptions
of our models and helps to simplify synthesis. We show in Section 7 that Cassiopea remains suiciently expressive
to support assembly synthesis for many OS components.

Because Cassiopea models ISAs at the assembler level, Cassiopea models need not be wire- or bit-level accurate.
Our goal is to generate code to be assembled and linked into an (existing) OS, using that OS’s compiler and
toolchain. Thus, Cassiopea descriptions need not capture phenomena hidden by the assembler (e.g., branch delay
slots on MIPS). Moreover, machine descriptions need contain only those parts necessary to synthesize targeted
machine-dependent OS components; a surprising inding of this work is how little of an ISA needs to be speciied
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to synthesize signiicant parts of an operating system. Although we anticipate a world where vendors provide
descriptions of ISA semantics, we currently write Cassiopea machine descriptions manually.

5 LOWERING TO MACHINE-DEPENDENT SPECIFICATIONS WITH THE ALEWIFE COMPILER

Synthesizing an OS component for a particular machine architecture requires a machine-dependent speciication

( E in Figure 2), i.e., a pre- and postcondition expressed in terms of a particular machine architecture’s state and
semantics. Meanwhile, the Alewife speciication for an OS component is written in terms of abstract functions
and abstract machine state, describing an abstract machine. Lowering6 is the process of bridging this gap, that is,
specializing a machine-independent Alewife speciication to a machine-dependent speciication.

As explained in Section 3, this requires a deinition of each abstract Alewife element suitable for the selected
machine. One possible source of these deinitions is the machine description itself. For OS-independent concepts,
it is reasonable to create a single abstract machine-independent model and instantiate it in each machine
description. For example, in practice every machine of interest has a stack pointer register; thus we include in
each machine description a deinition of stackpointer as an alias for the proper register. This is accompanied
by a deinition for the expected alignment of the stack pointer on entry into C code and a boolean indicating
whether stacks conventionally grow up or down. We also have OS-independent models for calling conventions,
position-independent code, interrupt enable/disable state, and certain pieces of trap handling state, such as the
address at which a trap occurred. OS-independent models for cache and TLB lushes are the subject of ongoing
research. Any OS using our machine descriptions is free to use these models or ignore them. For example,
our interrupt state model consists of one deinition: interrupts_are_on. This is suicient for the OSes in our
use cases, but an OS with traditional interrupt priorities needs a more complex model; for example it might
associate an interrupt mask with each priority level and provide a deinition that returns the hardware’s current
interrupt mask. A slightly more complex model might provide a deinition that returns the current priority level
by interpreting the hardware interrupt mask. That interpretation is itself OS-dependent, and since OS-dependent
deinitions do not properly belong in the machine description itself, they must appear elsewhere. We place them

in lowering iles ( C in Figure 2).
Lowering iles are Cassiopea-language iles that contain OS-speciic and machine-speciic deinitions suitable

for instantiating Alewife abstractions. To improve sharing, lowering iles are organized in terms of modules; each
ile can contain arbitrarily many modules and each module is a collection of arbitrary Cassiopea declarations
and, optionally, a frame clause. Both lowering ile modules and Alewife speciications can import zero or more
lowering modules by name.

The Alewife compiler ( D in Figure 2) reads the lowering iles, extracts requested modules from them, and
lowers Alewife speciications by replacing machine-independent types, deinitions, and speciications with their
machine-dependent counterparts. The deinitions that go into the lowering iles must be written as part of
producing a new OS port. Most of them derive from OS design decisions about how the OS interacts with
machine-dependent abstractions.

Other lowering deinitions arise from required machine-speciic logic: for example, MIPS and RISC-V both have
a “global pointerž register, which is used (in some cases) to optimize access to global data. When applicable, it
needs to be initialized to a ixed (but linker-chosen) value in key places. This requires a suitable set of abstractions
to use in speciications. The lowering iles for MIPS and RISC-V supply the needed deinitions; for other machines
the deinitions are empty. Note that while the set of possible machine-speciic concepts requiring hooks in
machine-independent speciications or code is ininite, and any new machine that appears can produce novel ones

6In abstract interpretation, a concretization function typically maps an abstract state to a set of concrete states. Our lowering chooses a single

concrete speciication, so we avoid the term “concretizationž. However, like a concretization function, lowering iles map something abstract

(an Alewife speciication) to something concrete (a machine-dependent speciication).
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Listing A. MIPS lowering file

1 lowering disp_defs {

2 let pc_reg: register = r5

3 let disp_reg: register = r6

4 let disp_area_reg: register = r4

5 let DISP_MAX: int = 268

6 def get_crit_ptr base: word->word=

7 base b+ 0x00000058 }

8 lowering may_use_flags { }

9 lowering disp_scratch {modify: r2}

Listing B. ARMv7 lowering file

1 lowering disp_defs {

2 let pc_reg: register = r14

3 let disp_reg: register = r2

4 let disp_area_reg: register = r1

5 let DISP_MAX: int = 270

6 def get_crit_ptr base: word->word=

7 base b+ 0x00000058 }

8 lowering may_use_flags {modify:N Z C V}

9 lowering disp_scratch { }

Fig. 6. Lowering files for disp_check, for use with the Alewife specification in Figure 4.

that require more hooks to be added (or even require OS machine-independent code to be altered to accommodate
the new ideas), it should be stressed that this is not a new problem, in the sense that it occurs regardless of what
porting technology the OS uses.
Figure 6 shows the MIPS and ARMv7 lowering iles used to specialize our example Alewife speciication in

Figure 4. Each deines the same three modules: disp_defs, may_use_flags, and disp_scratch.
The disp_defs module supplies values for registers, a constant, and a function for lookup in the dispatcher

structure. Lines 2ś4 supply concrete registers for pc_reg, disp_reg, and disp_area_reg. Line 5 declares the
concrete value for DISP_MAX, which gives the dispatcher structure size; it is instantiated with 268 on MIPS and
270 for ARMv7. Lines 6ś7 deine the abstract function get_crit_ptr, which computes the address of a speciic
ield in the structure. The ofset is the same for both MIPS and ARMv7, because both machines have 32-bit words
and pointers, but is diferent for 64-bit machines.
The may_use_flags and disp_scratch lowering deinitions relax frame conditions. Diferent machines can

require diferent numbers of scratch registers to accomplish the same task. Furthermore, on machines that
have a lags word, the speciication must include explicit permission to modify the lags. The modify frame

condition, as seen in Figure 6, indicates additional machine state (processor lags and scratch registers) that any
speciication using this lowering module may modify. The MIPS implementation of disp_scratchmakes register
r2 modiiable, so it can be used as a scratch register (line 9 in Figure 6A), while the may_use_flags module is
empty because there are no processor lags on MIPS. ARM needs no scratch register, but may_use_flags makes
four control registers N, Z, C and V (the basic processor lags) modiiable (line 8 in Figure 6B).

We use the lowering deinitions for two further purposes: irst, to deine machine-dependent context structures
(such as trap frames) and predicates about them, and second, to allocate registers in procedures.

Currently we write all the lowering deinitions by hand, including the identity and number of scratch registers.
However, we expect other tools in Aquarium can provide some of these deinitions automatically. In particular,
register allocation (both placing values in registers as they low from block to block, and choosing scratch
registers) is a well-studied problem. Extracting ofsets and sizes of structures for use in assembly code is also
easily done; almost every OS already has a tool for this7, and adjusting the output format to make it available to
Aquarium is trivial. We have left integrating as-needed use of scratch registers into the synthesis mechanism as
future work.

In Section 7, we distinguish lowering deinitions that we expect to be automatically generated (those deining
context structures and those doing register allocation, including scratch registers) from the other, essential,

7For example: https://anonhg.NetBSD.org/src/ile/tip/usr.bin/genassym/
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Listing A. MIPS specification

1 letstate DispMem:

2 32 bit 268 len 32 ref memory

3 frame: modify: r2

4 let crit_pc: 32 bit =

5 [DispMem, 0] b+ 0x00000058

6 let crit: bool =

7 *r5 b< fetch(crit_pc, 32)

8 pre: ( *r6 == [DispMem, 0] ) &&

9 ( *r0 == 0x00000000 )

10 post: (if crit then *r4 = 0x00000001

11 else *r4 = 0x00000000) &&

12 ( *r0 == 0x00000000 )

Listing B. ARMv7 specification

1 letstate DispMem:

2 32 bit 270 len 32 ref memory

3 frame: modify: N Z C V

4 let crit_pc: 32 bit =

5 [DispMem, 0] b+ 0x00000058

6 let crit: bool =

7 *r14 b< fetch(crit_pc, 32)

8 pre: *r2 == [DispMem, 0]

9 post: if crit then *r1 = 0x00000001

10 else *r1 = 0x00000000

Fig. 7. Generated machine-dependent specifications for disp_check.

lowering deinitions that must be written by hand. The context structure lowerings in particular are large (since
they include multiple assertions about each register involved, and there are a lot of registers), but only the
essential lowering deinitions represent porting efort. In fact, we already have a tool in the broader Aquarium
ecosystem that generates context structures and the necessary predicates about them [Holland 2020].

Regardless of whether they are automatically generated or manually written, for a given OS and architecture,
some lowering deinitions are used repeatedly in diferent procedures. For example, the module may_use_flags
(line 8 in Figure 6B) is used in every block that might involve conditional execution, because on ARM and other
machines with a lags word, it must be possible to set the lags so conditional executions can test them.

The declarations in a loweringmodule are speciically permitted to containmemory regions: some speciications
require memory regions on some machines and not others. For example, the blocks that load the “global pointerž
register on MIPS and RISC-V require a memory region (with an assembler label) that deines the address to be
loaded; this is not present on other machines. We do not, however, permit adding new machine instructions in
lowering iles.

Machine-Dependent Specifications

With the Cassiopea machine descriptions ( B in Figure 2) and lowering iles ( C in Figure 2), the Alewife compiler

( D in Figure 2) generates machine-dependent speciications ( E in Figure 2) for disp_check in MIPS and ARMv7,
shown in Figure 7. In Figure 7A, the machine-dependent speciication also includes the MIPS invariant in the pre-
and postcondition, ensuring that r0 is always zero (line 9 and 12 in Figure 7A). We include more details about the
lowering procedures in Appendix A.7.

6 SYNTHESIS WITH THE CASSIOPEA SYNTHESIS ENGINE

The Cassiopea synthesis engine ( F in Figure 2) operates in two modes. In synthesis mode, it takes as input a

Cassiopea machine description ( B in Figure 2) and a machine-dependent speciication generated by the Alewife

compiler ( E in Figure 2) and synthesizes and veriies assembly programs ( G in Figure 2). In verify-only mode, it
takes as input a sequence of operations, a machine-dependent speciication, and a Cassiopea machine description
and it veriies that the operations satisfy the speciication. We use this latter mode extensively to debug both
speciications and machine descriptions.
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Listing A. MIPS operation sequence

1 (LW r2 r6 0x0058)

2 (SLTU r4 r5 r2)

Listing B. ARMv7 operation sequence

1 (LDR_imm r0 r2 0x058 0b1110)

2 (CMP_reg r14 r0 0b1110)

3 (MOV_imm r0 0x0 0x01 0b0011)

4 (MOV_imm r0 0x0 0x00 0b0010)

Listing C. MIPS assembly program

1 lw $2, 88($6)

2 sltu $4, $5, $2

Listing D. ARMv7 assembly program

1 ldr r0, [r2, #88]

2 cmp lr, r0

3 movlo r0, #0x00000001

4 movhs r0, #0x00000000

Fig. 8. Synthesized operation sequences and the verified assembly programs for disp_check.

Figure 8 shows the MIPS and ARMv7 sequences synthesized for the disp_check example. Figure 8A uses
LW to load the contents of the memory location [DispMem,88] into scratch register r2 and then uses SLTU to
compare and set r4 based on the result of the comparison. By contrast, Figure 8B uses LDR_imm to load the value
stored in [DispMem,88] into r0, then uses CMP_reg to compare it with r14. Finally, it uses MOV_imm conditionally
twice to set r0 to either 0 or 1. Implicit frame conditions prevent the synthesized code from modifying other
general-purpose registers or other ields of the control registers. It is possible that there exist multiple sequences
that satisfy the pre- and postconditions; our synthesis engine takes the irst speciication-satisfying sequence
of operations it inds (working from smaller to larger programs) as the synthesized result, and it may produce
diferent results in multiple runs. If the speciication is incomplete, the synthesized results can be functionally
diferent. This is common in assembly, because, in general, it does not matter what gets left behind in scratch
registers. After veriication, our synthesis engine extracts an operation sequence to a syntactically valid assembly
program, Figures 8C and D.
Our synthesis engine uses symbolic execution to compile a program to a representation in irst-order logic,

allowing the use of a satisiability-modulo-theories (SMT) solver to perform the synthesis itself. It uses several
solvers: Boolector [Brummayer and Biere 2009], Z3 [De Moura and Bjùrner 2008], and Yices [Dutertre 2014]. Our
representation uses the quantiier-free logic of inite bitvectors QF_BV for eicient SMT solving. We developed
several novel optimization techniques to improve the scalability of program synthesis, especially synthesis for
assembly language. In the rest of this section, we describe the main components of our synthesis engine and
several optimizations critical for scaling (Section 6.3).

6.1 Syntax-Guided Synthesis

Our synthesis engine implements syntax-guided synthesis for assembly programs. We model assembly programs
as sequences of instructions, each of which has a name and zero or more operands (arguments). As in standard
syntax-guided synthesis [Alur et al. 2013; Solar-Lezama et al. 2008], we use a symbolic program composed of
symbolic instructions to represent sets of possible programs. Symbolic programs are parameterized by control

variables that represent the choice of operation (i.e., the opcode) and arguments.
Given a symbolic program and a speciication, the goal of synthesis is to select a correct program by choosing an

appropriate value for each control variable. We irst use symbolic execution (Section 6.2) to generate correctness
conditions, then use Counterexample-Guided Inductive Synthesis (CEGIS) to ind a satisfying assignment of the
control variables.
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The CEGIS loop iterates guess and verify phases until it either obtains a correct program or fails. In the guess
phase, the solver tries to ind an assignment to the control variables, producing a concrete program candidate. In
the verify phase, the solver tries to ind an initial state, called a counterexample, that satisies the precondition but
causes the candidate to falsify the postcondition. If it succeeds in inding such a counterexample, we attempt
another guess; otherwise, the candidate is a correct program.

6.2 Symbolic Execution

Symbolic execution for program synthesis explores every execution path to produce a summary of a program’s
semantics. Since evaluation in Cassiopea always terminates, we do not need any special techniques to approximate
loop semantics.

We implemented a symbolic execution engine to eiciently execute assembly programs described in Cassiopea.
Like both Sketch [Solar-Lezama 2008] and Rosette [Torlak and Bodik 2014], we represent symbolic values with
a DAG and take advantage of this representation to evaluate operations concretely whenever possible. We
incorporate simpliication techniques from both Sketch and Rosette for eiciency. From Sketch, we incorporate
backwards value-set analysis, enabling us to aggressively simplify pre- and postconditions. From Rosette, we
incorporate symbolic relection and structural merging, enabling us to represent higher-level structures (such
as Cassiopea values and machine states) separately from SMT constraints, while curtailing the path explosions
associated with symbolic pointers.
Although we built our synthesis engine as a standalone system, we believe that we could have extended

Rosette, which would have allowed us to take advantage of its symbolic execution engine. For instance, it
should be possible to incorporate the simpliication techniques from Sketch into Rosette either by extending
Rosette’s internal symbolic value simpliier or by using Rosette’s symbolic relection interface. Rosette’s default
type-directed merge alone does not automatically handle the path explosions associated with symbolic pointers,
since the merging behavior we desire depends on the pointer’s memory region. However, it should be possible to
implement our desired merging behavior using Rosette’s symbolic relection interface. Ultimately we chose to
implement our own engine, because we found it easier to debug. In retrospect, our optimizations would have
been more generally useful had we implemented them as Rosette extensions.

Symbolic pointers. Cassiopea’s semantics of bitvectors and pointers requires special treatment for eicient
symbolic execution. Symbolic pointers generate two primary problems for symbolic execution: path explosion
on reading memory and path explosion due to irregular representation. Careful rewriting is often necessary to
prevent combinatorial blowup in symbolic execution; we developed a set of rewriting rules that work well for
Cassiopea machine descriptions.

Accessing memory at a symbolic ofset. Suppose � is a symbolic pointer (xmem, � ) where xmem is a memory
region and � is a symbolic ofset. To represent the result of reading memory at � , we elected to use an if-
then-else (ITE) of the values in xmem at the possible values of � , similarly to Angr [Shoshitaishvili et al. 2016].
Likewise, when writing to memory at a symbolic ofset, we update the memory at each possible ofset to an
appropriately-guarded ITE of the old and new values.

We considered using uninterpreted functions (UIFs) to represent memory, similar to Serval [Nelson et al. 2019].
However, in early experimentation, we found that UIFs produced signiicant slowdown in candidate guessing
compared to the ITE-based approach. Although UIFs productively accelerate veriication for Serval, our synthesis
engine spends more than 90% of its run time in candidate guessing. Furthermore, most of our use cases have fairly
small memory regions. In combination with our pointer merging approach, this means that the extra merging
generated by the ITE-based approach does not signiicantly afect the performance of symbolic execution.
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Path explosion on reading memory. Accessing memory with a symbolic pointer can lead to path explosion.
Taming this path explosion requires structural merging for pointer values. However, the merge rule must be
selected carefully, as we illustrate with the following example. To merge� concrete pointers �� for � ∈ {1, . . . ,�},
a direct approach would be to merge the regions and ofsets, producing a pointer � with a symbolic region and a
symbolic ofset. But reading memory at � may result in path explosion: since we could end up reading� ofsets
from each of� distinct regions, the resulting ITE could contain up to�2 distinct branches. Moreover, all but�
of these branches are infeasible.
To avoid this ineiciency, our synthesis engine merges only the ofsets of pointers that point into the same

region. For example, we rewrite the symbolic value (ite g (R1, x) (R1, y)) (representing the symbolic
pointer (�1, �) if g is true and symbolic pointer (�1, �) otherwise) as (R1, (ite g x y)), because the symbolic
pointers reference the same memory region. However, we will not rewrite the symbolic value (ite g (R1, x)

(R2, y)). If � is produced by this merge strategy, reading from � can produce at most� branches, one for each
of the original concrete �� .

Path explosion due to irregular representation. Representing symbolic values of type C bit requires care to avoid
what Bornholt and Torlak [2018] refer to as irregular representation. A symbolic C bit value may be a bitvector, a
pointer, or a complex ITE that depends on guards or path conditions introduced by state merging. When this
structure has a “regularž (canonical) representation, structural merging can eiciently generate compact results.
If the representations are not forced to be regular, they will often diverge structurally and execution results will
grow combinatorially, producing path explosion.
For example, consider the result of executing a symbolic ADD instruction such as ADD R1 ? R2 (where ? is

a symbolic register) on an initial machine state � . Register R2 in the inal machine state contains a symbolic
value with up to one branch per possible register. The symbolic values in the initial machine state can themselves
be ITEs of bitvectors and pointers, so the result of executing this ADD is often a nested ITE structure. Without
careful canonicalization, as the number of symbolic instructions grows, the ITEs become deep, leading to path
explosion when the resulting value is later used.

Avoiding such blowups is critical for performance. We selected structural merging rules to ensure that symbolic
C bit values have a regular representation. Our synthesis engine rewrites symbolic values that contain both
bitvector and pointer branches so that bitvector values are in a separate branch from pointer values, in addition
to using the pointer merging approach described above. It is necessary to apply this canonicalization recursively
to latten nested ITEs. Besides mitigating path explosion, this also simpliies the path conditions that result from
accessing memory at an address that may not be a pointer.

6.3 Synthesis Optimizations

Our synthesis engine employs several synthesis optimizations: read/write constraints, state gating, dependency
constraints, and rule-based decomposition. Read/write constraints, dependency constraints, and rule-based
decomposition are generally applicable techniques, although our speciic rules are mostly assembly language
speciic. Read/write and dependency constraints are particularly powerful in assembly language synthesis but
likely apply to other imperative contexts. Applying these optimizations produces an average speedup of 21× on
our use cases, achieving 1380× in one case. We further evaluate these optimizations in Section 7.6.

6.3.1 Read/Write Constraints. We add constraints to restrict the registers that an operation is allowed to read,
based on the speciication and preceding operations. Speciically, an operation may read only those registers
either mentioned by the speciication (including frame conditions) or written by preceding operations. We call
these available registers. For each operation, we add constraints to ensure that any registers it reads are contained
in the available register set.
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We note that in some machines, operations may read some registers (e.g., control registers) implicitly. We
annotate these registers with the control keyword (as shown in Figure 5) and include them in the set of available
registers for each operation.

Intuitively, registers not in the available register set contain arbitrary values, since they are neither constrained
by the speciication nor deined by preceding operations. As such, we expect that they should not be read in
candidate programs.

6.3.2 State Gating. State gating removes registers and operations that are not needed to produce a correct imple-
mentation for a machine-dependent speciication. If a register is not mentioned in a precondition, postcondition,
or frame condition of a speciication, it contains an arbitrary value that is not restricted by the speciication,
and we consider it irrelevant. A register not mentioned in the postcondition or in a frame condition may not be
modiied by a correct implementation; registers that are additionally not mentioned in the precondition also do
not contain information that needs to be read.

We cannot delete all unnecessary registers immediately, because assembly instructions often access registers
implicitly; for example, many instructions in 32-bit ARM have conditional versions that access lag bits in the
control register. We analyze the machine description to ind the registers that operations can access together with
relevant registers and add these to the set of registers that should be retained. We forbid read/write access to all
other registers by removing them from the machine description. We additionally remove operations that require
an access to an irrelevant register, either explicitly or when all possible values for an operand are irrelevant.

6.3.3 Dependency Constraints. We analyze the speciication and machine description to discover dependency
constraints to further prune the search space. Where a speciication ensures that the inal value of a location is
uniquely determined by the initial state, we determine which values in the initial state afect it. We then require
that guessed programs exhibit these dependencies, i.e., the computation of the inal value does indeed depend on
the relevant parts of the initial state.

We ind locations ℓ that are uniquely determined by the initial state by querying whether there exists an initial
state for which the postcondition holds for two distinct values in ℓ :

∃�, � ′, � ′′ . pre(�) ∧ post(�, � ′) ∧ post(�, � ′′) ∧ � ′ [ℓ] ≠ � ′′ [ℓ]

If this query is UNSAT, then for any initial state, the inal value in the location is uniquely determined.
For such a location ℓ , we then perform a series of SMT queries to identify on which universally quantiied

variables in the precondition the inal value of ℓ depends. Speciically, for each variable � in the precondition,
we ask whether there exists an initial state � and distinct values �1 and �2 such that � [� ↦→ �1] and � [� ↦→ �2]
produce two diferent correct values for location ℓ :

∃�, � ′, � ′′, �1, �2 . pre(� [� ↦→ �1]) ∧ pre(� [� ↦→ �2])

∧ post(� [� ↦→ �1], �
′) ∧ post(� [� ↦→ �2], �

′′)

∧ � ′ [ℓ] ≠ � ′′ [ℓ]

If this query is SAT, then ℓ depends on � .
We add constraints to ensure that guessed programs exhibit these dependencies; we analyze the symbolic

program to compute an assertion on control variables that ensures that variable � is used in the computation
of location ℓ .8 Intuitively, these assertions are efective in accelerating guessing, because they enable the solver
to quickly reject programs that do not exhibit the appropriate dependencies and therefore cannot possibly be
correct.

8The assertion is a necessary but not suicient condition that � is used in the computation of ℓ , i.e., our program analysis overapproximates

when � might be used.
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Algorithm 1 Rule-based decomposition procedure.

1: procedure Synthesize(�) ⊲ Given starting speciication � .
2: � ← {Hole(s, 1)} ⊲ Begin with hole for one instruction.
3: while � ≠ ∅ ∧ not timed out do
4: � ← TakeBest(�)
5: ℎ ← FindFirstHole(�)
6: if ℎ = ⊥ then ⊲ No holes remain; � is a complete program.
7: return �

8: end if

9: Hole(�, �) ← ℎ ⊲ Otherwise, ℎ is the current hole with spec � and size �.
10: � ← Sygus(�, �)
11: if � ≠ ⊥ then ⊲ Syntax-guided synthesis succeeded at � instructions.
12: � ← � ∪ {� [ℎ ↦→ Prog(�)]} ⊲ Replace current hole with found program � .
13: continue

14: end if

15: for (�1, . . . , ��) ← Decompose(�) do ⊲ For each subgoal decomposition, create
16: � ← Seq(Hole(�1, 1), . . . ,Hole(��, 1)) ⊲ a sequence of holes, one per subgoal.
17: � ← � ∪ {� [ℎ ↦→ � ]} ⊲ Replace current hole with sequence.
18: end for

19: � ← � ∪ {� [ℎ ↦→ Hole(�, � + 1)]} ⊲ Increase current hole’s search size.
20: end while

21: end procedure

6.3.4 Rule-Based Decomposition. Our synthesis engine augments syntax-guided synthesis with a heuristic
rule-based decomposition algorithm to achieve performance and scalability. Rule-based decomposition uses a
set of machine-independent decomposition rules that decompose a speciication into speciications for smaller
subprograms (“subgoalsž). Our algorithm combines decomposition and syntax-guided synthesis in an iterative
scheme, alternately using rules to decompose subgoals and using pure syntax-guided synthesis to discharge
subgoals. The procedure is described in Algorithm 1.
Rule-based decomposition allows us to improve performance over syntax-guided synthesis. Syntax-guided

synthesis scales poorly with increasing program length; decomposing the speciication into subgoals for smaller
programs reduces the size of each syntax-guided synthesis invocation, signiicantly accelerating synthesis
overall. Meanwhile, using syntax-guided synthesis as a inal code generation stage allows our rules to remain
machine-independent.

Search Algorithm. During synthesis, our synthesis engine performs a search over possible trees of rule applica-
tions to the input speciication instance, maintaining a set of trees encountered (� in Algorithm 1). Each tree
� corresponds to one possible subdivision of the speciication into subgoals; each subgoal has an instruction
count �, which is an upper bound on the number of instructions that will be used to satisfy the subgoal. In each
iteration, the synthesis engine selects a tree from this set and a subgoal from the tree, and invokes syntax-guided
synthesis up to � instructions to try to discharge the subgoal (line 10). The synthesis engine selects the next tree
to attempt according to a cost heuristic (TakeBest); our heuristic scores a tree by the lengths of its remaining
subgoals, weighting each subgoal exponentially in its length.
If syntax-guided synthesis fails on a subgoal, our synthesis engine attempts to decompose the subgoal by

applying each rule (Decompose, line 15). Each new tree obtained is added to the set (line 17). The synthesis
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engine also retains the original tree, increasing the subgoal instruction count to � + 1 for later exploration (line
19). If syntax-guided synthesis succeeds, the synthesis engine stores the partially discharged tree and continues
(lines 11ś13). If the synthesis engine discharges a tree’s last remaining subgoal, it combines the results to produce
a program that is correct with respect to the original goal (line 7).

Rule Selection. Our implementation of rule-based decomposition includes ive rules. All of our rules are speciic
instances of sequential composition; they generate subgoals such that post(�� ) = pre(��+1). As such, subprograms
that satisfy the generated subgoals may be composed by sequence to produce a correct program for the input
goal.

• LoadMem. Given goal �, if a value � exists in memory that is not in a register, generate two subgoals (�1, �2).
Subgoal �1 has pre(�1) = pre(�) and a postcondition that requires � in a scratch register. Subgoal �2 has
post(�2) = post(�).
• LoadLbl. Given goal �, if a label ℓ exists whose value (an address) is not in a register, generate two subgoals
(�1, �2). Subgoal �1 has pre(�1) = pre(�) and a postcondition that requires ℓ in a scratch register. Subgoal
�2 has post(�2) = post(�).
• SetReg. Given goal �, if post(�) contains a register � whose value is uniquely determined and is wrong,
then generate two subgoals (�1, �2). Subgoal �1 has pre(�1) = pre(�) and a postcondition demanding the
correct value in register � . Subgoal �2 has post(�2) = post(�).
• SetMem is akin to SetReg, but for memory locations.
• FindPtr. When a subgoal � was generated by LoadMem or SetMem, generate subgoals (�1, �2). Subgoal
�1 has pre(�1) = pre(�) and a postcondition demanding that a scratch register contain a pointer to the
relevant address. Subgoal �2 has post(�2) = post(�).

We base our rule selection on observations of common properties of OS assembly code and assembly languages.
First, OS assembly code typically performs simple calculations and otherwise serves only to move or set state.
Often, these moves and sets are performed by independent program fragments. Second, many assembly languages
support arithmetic over only a subset of their registers; a signiicant fraction of assembly programs is dedicated
to moving values for calculations then storing the results. We use rules that generate (1) independent subgoals
for programs to satisfy independent pieces of state and (2) subgoals that move data to and from general-purpose
registers. Due to our choice of rules, our algorithm does not speed up synthesis for programs that mainly perform
arithmetic.
Our rules are nondeterministic: more than one rule may be applicable to a speciication, and one rule may

apply several ways. For instance, SetReg may apply to several registers in a speciication. Our rules are not, in
general, invertible [Liang and Miller 2009]. Applying an invertible rule to a derivable goal will produce only
derivable subgoals. Applying non-invertible rules may require backtracking. Our rules are also incomplete: it is
possible that no rule applies to a given speciication instance, in which case our synthesis engine regresses to
normal syntax-guided synthesis. However, our rules are sound: if synthesis succeeds on the generated subgoals,
then the resulting program is correct against the input speciication instance.

Separation Logic. Internally, we use a separation-logic-like representation of the speciication, inspired by
SuSLik’s [Polikarpova and Sergey 2019] use of separation logic to represent synthesis goals for imperative
heap-manipulating programs. This allows our rules to structurally decompose speciications by simple pattern-
matching.

7 VALIDATION

We validate the expressiveness of Cassiopea by successfully modeling four real machine architecturesÐ32-bit
MIPS, 32-bit ARM, 32-bit RISC-V and x86_64Ðand using them to synthesize runnable code.
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From two preexisting OSesÐBarrelish [Baumann et al. 2009] and OS/161, a BSD-like teaching OS [Holland et al.
2002]Ðwe took eight complete machine-dependent procedures (written either entirely in assembly language or
in a mixture of C and assembly language) and split them into semantically meaningful steps. We implement each
step with a block of code, which is either a synthesis use case or out of scope for synthesis. We evaluate 50 blocks
in all: 35 are synthesis use cases, and 15 are out of scope. Of the latter, 10 are single call or return instructions,
two are single system call instructions, and the other three are machine-speciic exception operations. Section 7.1
discusses the use cases in more detail.

We validate the expressiveness of Alewife by successfully writing machine-independent speciications for each
of the blocks not explicitly out of scope.

We validate our implementation as follows:

• We use the Alewife compiler to lower each machine-independent speciication for each architecture,
generating a total of 140 machine-dependent speciications for synthesis.
• We use our synthesis engine to verify hand-written assembly code for all of these machine-dependent
speciications.
• We use our synthesis engine to synthesize and verify assembly code for all 140 machine-dependent
speciications.

In the remainder of this section, we explain the targeted machine-dependent procedures and the four real
machine architectures modeled in Sections 7.1 and 7.2, respectively. Sections 7.3 and 7.4 report the information
about the corresponding iles, while Sections 7.5 and 7.6 discuss veriication and synthesis performance.

7.1 Use cases

We selected two Barrelish and six OS/161 complete machine-dependent procedures, most of which were originally
written entirely in assembly. Each procedure comes from a speciic port of the original OS and performs some
speciic, recognizable machine-independent task in the appropriate machine-dependent manner for its target
machine. We selected the procedures without signiicantly refactoring the original OS kernel. The procedures
include interrupt and exception handling, system call handling, user-level startup code, context switches, and
other small OS components. We chose the procedures to be representative of tasks that machine-dependent kernel
code and user-level OS code must perform in assembly language: changing processor state and manipulating
registers in ways not expressible in C. There are two chief categories missing: one is kernel startup code, which
often contains large amounts of machine-speciic code, and the other is memory management code, such as cache
control and TLB management. We successfully synthesized some memory management code blocks, but do not
include them in the paper: it is diicult to ind an example in existing code bases that is both manageable and
explainable without extensive refactoring. We believe the chosen procedures are largely representative of the
synthesizable assembly programs in our scope.

Note that refactoring existing OSes to have clean machine-independent interfaces for machine-dependent code
is not a goal for our system or our validation. For example, the native Barrelish trap handling code for ARM and
x86_64 is quite diferent, because each port was handwritten separately. Based on advice from the Barrelish team,
our use cases are based on the ARM version. This means that while we generate x86_64 code, that code cannot
be easily incorporated into the existing x86_64 Barrelish port, which needs a diferent speciication. However, in
all cases the code for the original architecture (ARM for Barrelish, MIPS for OS/161) is suitable for incorporation
into the existing OS implementation. (We include handwritten code for out-of-scope blocks.) Reorganizing the
OSes with a uniform structure across all ports, and factoring out code that could be machine-independent but is
gratuitously diferent in each port, so that speciications are not needlessly machine-dependent and synthesis
results can be seamlessly plugged in for all machines, is a large project in its own right and the subject of ongoing
research.
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Our goal of synthesizing assembly procedures to implement portions of machine-dependent OS functionality
is diicult due to the challenge of scaling assembly code synthesis, while balancing such scalability with the
expressiveness and complexity of the languages that describe OS functionality and processor semantics. We
adopted a decomposition model, where each procedure is explicitly (and manually) divided into a sequence of
machine-independent steps each performing a speciic recognizable task, because most of these procedures are
too large to synthesize all at once. (One could imagine letting our synthesis engine run for longer periods of time
to synthesize complete procedures; unfortunately this inherently requires exponentially longer periods of time.)
A given block might be empty for a given machine, but no block is empty for all machines.

As we synthesize only loop-free blocks, we use program labels and external branches for all control low other
than forward branches within a block.

As mentioned earlier, some blocks are out of scope for synthesis or best handled in other ways, so we generate
blocks in diferent ways. Some of these other generators, such as a context-switch compiler and a tool for
automatically composing blocks, are described in other work [Holland 2020]. In the following section, we describe
each of the blocks amenable to synthesis.

Barrelfish Use Cases

swi-handler (SWI). This is the machine-level system call trap from the ARMv7 implementation. “SWIž stands
for “software interruptž, which is ARM terminology for a system call trap. From our machine-independent
speciications, we generate comparable system call handlers for MIPS, RISC-V, and x86_64. There are 13 synthesis
blocks, of which two are empty on ARM but were necessary for one or more of the other machines.
(1) spill: save some registers to make room to work.
(2) check-kern: check whether the trap came from kernel or user mode, and branch to the corresponding code.
(3) load-got: get the global ofset table base address on machines that need it in a register. (The global ofset

table is used for indirect addressing in position-independent code.)
(4) get-disp: load the address of the current dispatcher, the Barrelish process structure equivalent.
(5) check-disabled: check whether the dispatcher was in “disabledž mode, and if so, branch to the subsequent

set-disabled block.
(6) indpc: load the exception program counter into a general purpose register on machines where this is

needed, which does not include ARM.
(7) check-low: check the exception program counter against the lower bound of a critical region, and branch

to the set-enabled block if below it.
(8) check-high: check the upper bound and branch to the set-disabled block if below it.
(9) set-enabled: load the address of the “enabledž register save area in the dispatcher.
(10) set-disabled: load the address of the “disabledž register save area.
(11) reshule: after saving registers, move values around as needed to avoid clobbering them in later blocks.

Empty on ARM.
(12) initstack: load the stack pointer to point to the kernel stack.
(13) moveargs: set up the arguments for the C system call handler.

cpu-start (CS). This is the entry point for application-core kernels9 from the ARMv7 port. It consists of two
parts. The irst part is considered as a synthesis block:
(1) store-got: on machines that need the global ofset table in a register, fetch its base address from the argument

structure, and store it where the trap handler expects to ind it later.

9A Barrelish system uses a single core running a special kernel to initialize the system. The remaining cores then boot with a kernel for

cores running applications, including the system Monitor process.
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The second part is the same as the initstack block from the swi-handler example (SWI-12), so we reuse the same
Alewife speciication for this part and do not count it as an extra synthesis block for the evaluation.

OS/161 Use Cases

setjmp (SJ). This is the C standard library function setjmp. It stores callee-saved registers and the stack pointer
and returns 0. It is composed of two blocks:
(1) saveregs: save registers.
(2) retval: set the return value.

longjmp (LJ). This is the C standard library function longjmp. It reloads the registers saved by setjmp and and
arranges to return a caller-supplied value from the setjmp call. It is compsed of two blocks:
(1) loadregs: load registers.
(2) retval: set the return value, adjusting it if needed.

crt0 (CRT). This is the startup code (crt0) for user-level programs. It contains seven synthesis blocks:
(1) initstack: ensure that the stack pointer is aligned correctly according to the function call ABI. As OS/161

is a teaching operating system, it does not assume that the initial stack pointer provided by the kernel is
correctly aligned.

(2) savevals: save the values of argv and environ, passed in registers from the kernel, into the private global
variables libc uses to hold them.

(3) initregs: perform machine-dependent register initializations, such as the global pointer register used by
some RISC machines.

(4) mainargplace: place the arguments for calling main.
(5) exitsave: save the return value from main in a callee-save register.
(6) exitargplace: place the return value from main as the argument to exit.
(7) loop: unconditional branch back to repeat the call to exit in case it returns. (While exit normally does

not return, exit is also student code; the loop is a precaution to avoid bizarre behavior when it does not
work as intended.)

syscallstub (SYS). This is a user-level system call stub. It has three synthesis blocks:
(1) loadnum: load the system call number into the appropriate register. Empty on machines where the call

number is placed in the system call instruction.
(2) jump: unconditional jump from per-system-call code to shared code.
(3) seterrno: set the C-level return value and errno from the kernel-level return value.

cpu-irqof (IRQ). This procedure turns interrupts of for the current processor. It is just one block:
(1) irqof: turn of the interrupts.

(Turning interrupts on is efectively the same and omitted for brevity. A related function for idling the processor
consists mostly of interrupt state manipulation, along with a special instruction for idling that we do not attempt
to synthesize, and is also omitted.)

thread-switch (TS). This is a complete kernel-level thread switch; it saves the state of the current thread and
restores the state of the next thread to run. It consists of six blocks:
(1) entry: make space on the stack to save registers.
(2) saveregs: write the old thread’s registers to the stack.
(3) savestack: save the old thread’s stack to its thread structure.
(4) loadstack: load the new thread’s stack from its thread structure.
(5) loadregs: read the new thread’s registers from the stack.
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(6) cleanup: clean up the stack for return.

7.2 Machine Descriptions

ARM. The 32-bit ARM model has three-operand instructions, 16 registers, and a status register. We do not include
Thumb instructions, the 16-bit variant of the ARM ISA. Most ARM instructions are all conditionally executed
based on the lags in the status register. We model the status register as multiple smaller register ields, as direct
access to the entire status register is rare in ARM code. In ARM, many immediate values are represented as an
8-bit ield rotated right by an even 4-bit shift amount between 0 and 30. We model this directly and thus emit
only valid immediates. This is necessary, because the ARM assembler will not emit extra instructions to encode
impossible immediates. We do not include multiple data transfer instructions such as LDM/STM, since they can
always be replaced by multiple single load/store and arithmetic instructions.

MIPS. Our MIPS model has three-operand instructions and 32 general-purpose registers. Most kernel-mode
phenomena are handled by control registers, which are composed of ixed-size ields; we model each ield
separately in Cassiopea and concatenate the ields together when accessed as a register. In MIPS, general-purpose
register 0 is always zero, and writes to it are discarded. We handle this by treating register 0 as special in every
instruction and adding a machine invariant to the Cassiopea machine description (see Figure 5A). We handle the
branch delay slots associated with jumps by using the assembler mode that hides branch delay slots.

RISC-V. Our 32-bit RISC-V model has three-operand instructions, 32 general-purpose registers, and a supervisor-
mode status register similar to that of MIPS. We again model the status register by separating it into ixed-size
ields, concatenating them together when accessing it as a whole. As in MIPS, general-purpose register 0 is always
zero, and we encode this as a machine invariant.

x86_64. We modeled x86_64 with AT&T syntax [Narayan 2007]. Our x86_64 model has two-operand instructions,
16 registers, and a lags register interrogated by certain branch instructions. We model the lags register as
separate 1-bit registers.

General Special Flags Control
Architecture Lines Operations Registers Registers Registers Registers

ARM 933 34 15 4 9 (141 total bits)
MIPS 495 37 32 2 9 (156 total bits)
RISC-V 618 37 32 31 (193 total bits)
x86_64 567 56 16 4 3 (53 total bits)

Table 1. Size of the Cassiopea machine descriptions for each architecture. Control registers are modeled with separate

registers for individual fields, so both the counts and the total addressable space vary widely depending on the layout.

Completeness. We implemented 34 operations in ARM, 37 in MIPS, 37 in RISC-V and 56 in x86_64. All models
include assembly operations for arithmetic, bitwise logic and shifts, comparison, moves, memory accesses,
conditional branching, and supervisor operations. This is a small fraction of the total instructions available
on each machine (especially x86_64) but covers all the basic operations. Each machine model also includes all
the general-purpose registers, the basic processor lags on machines that have them, and a selection of control
registers as needed for our use cases. Table 1 shows line, operation, and register counts for each machine model.

Shortened Machine Descriptions. Because including the full complement of general-purpose registers makes even
the simplest synthesis problems extremely slow in the absence of state gating, for each machine we prepared a
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single alternate description with most of the general-purpose registers commented out, retaining only 6ś8 of the
most commonly used ones. We use this shorter description for all the use cases it can support, that is, those that
do not require the registers it comments out. The blocks that use the full descriptions are:

• SJ-1, LJ-1, TS-2 and TS-5, whose context operations inherently require the full register set.
• CRT-5 and CRT-6 on MIPS and RISC-V.
• All the SWI blocks on MIPS except SWI-2 and SWI-12.

This trimming relects what one might readily do by hand in the absence of state gating. (It is, indeed, what we
did by hand before we had state gating.) Note that this change is strictly adverse to our evaluation, in that it
makes our baseline considerably more performant.

7.3 Alewife Specifications and Lowering

We were able to express all 35 machine-independent speciications in Alewife. We supplied lowerings for all
35 × 4 = 140 combinations of machine-independent speciications and machine descriptions.

Table 2 shows the number of lines of code for each machine-independent speciication.10 Table 3 presents the
total length of the lowering iles for each OS and architecture. As discussed in Section 5, we divide these into
two categories: “Manualž lowering includes OS-and-machine-speciic deinitions that need to be hand-written.
“Automatablež lowering includes deinitions that can reasonably be generated: register allocation, data structure
ofsets, and speciication fragments for context (register-save) structures. We cannot ascribe a speciic length to
the lowerings associated with each machine-independent speciication, since there is signiicant sharing and reuse.
Centralizing machine-dependent deinitions in a small set of iles heavily reduces manual efort; we consider it
an important element of the expressiveness of Alewife and Cassiopea.

Our use cases include 434 lines of Alewife and 67 lines of manual lowering, for a total of 501 lines of speciication.
This in turn allows us to synthesize 383 lines of code. Because the incremental cost of a new port is just a new set
of lowering iles, averaged over the four existing ports the ratio of (manual) lowering iles to write to lines of
code synthesized is 0.175.
This is perhaps somewhat optimistic, because the generation of automatable lowerings requires some spec-

iication of its own, some of which may be machine-dependent and need to be provided for each port. A full
discussion of those considerations is beyond the scope of this paper, but an absolute upper bound may be given by
including the 588 lines of automatable lowerings in the porting efort, which makes the ratio of lines of lowering
iles to lines synthesized 1.71.

Including the machine-independent speciications the overall efort for four ports is 1.31 lines of speciication
per line synthesized. This number is perhaps not as appealing, but we consider the incremental porting cost the
primary concern; see Section 8.2 for more context.

7.4 Hand-writen assembly programs

To help with validation, we obtained hand-written assembly for all use cases on all machines (we either wrote
them manually ourselves or took them from existing implementations)11

Table 2 reports the size of the assembly program synthesized for each machine-independent speciication
under all four architectures. Typically, synthesized assembly programs difer signiicantly in implementation
from our hand-written versions; sometimes, the synthesized programs are shorter. For cases where synthesis
timed out after 1800 seconds, the reported number in parentheses is the number of assembly instructions in our
hand-written implementation.

10All lines-of-code counts exclude blank lines, comments, and standalone close-braces.
11OS/161 ships with MIPS code; we wrote versions for ARM, RISC-V, and x86_64. Barrelish ships with ARM and x86_64 versions; we wrote

MIPS and RISC-V manually, and restructured the x86_64 version as necessary to match the structure of the ARM implementation.
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Spec
Alewife

(lines)
Veriication Time (ms) Synthesis Time (s) Assembly (lines)

ARM MIPS RISC-V x86-64 ARM MIPS RISC-V x86-64 ARM MIPS RISC-V x86-64

SWI-1 5 60 130 56 43 5.1 0.65 45 1.0 5 2 7 3
SWI-2 5 41 120 43 34 23 23 9.9 0.70 3 4 3 2
SWI-3 7 41 53 41 32 0.15 0.36 0.036 0.031 1 2 0 0
SWI-4 20 63 150 63 55 15 4.6 3.8 4.1 4 4 4 4
SWI-5 13 45 130 44 37 38 2.4 1.5 1.7 3 2 2 2
SWI-6 6 40 120 43 33 0.047 0.24 0.37 0.043 0 1 1 0
SWI-7 12 58 130 47 42 5.4 1.0 0.81 2.0 3 2 2 3
SWI-8 12 48 140 48 42 15 1.0 0.80 2.1 3 2 2 3
SWI-9 12 42 120 42 33 1.6 1.3 1.1 0.67 3 3 3 3
SWI-10 10 41 120 42 34 1.1 0.62 0.54 0.45 2 2 2 2
SWI-11 5 40 120 42 32 0.047 0.19 0.051 0.043 0 1 0 0
SWI-12 13 43 55 42 33 1.7 0.48 1.7 0.45 2 2 3 2
SWI-13 21 41 120 42 33 0.077 1.9 0.082 0.073 0 3 0 0
CS-1 15 52 68 49 38 1.2 1.6 0.050 0.037 2 3 0 0
SJ-1 10 160 240 290 120 43 33 59 9.5 11 11 14 8
SJ-2 5 41 45 41 32 0.28 0.080 0.083 0.064 1 1 1 1
LJ-1 10 140 220 250 110 54 32 58 9.6 11 11 14 8
LJ-2 13 41 49 44 34 9.4 1.2 2.8 14 2 2 2 3
CRT-1 24 46 65 49 55 8.4 19 0.69 0.44 2 3 1 1
CRT-2 14 48 57 52 40 4.2 2.6 2.4 0.63 4 2 4 2
CRT-3 15 40 50 45 33 0.062 0.20 0.20 0.074 0 1 1 0
CRT-4 30 43 65 47 35 0.066 0.089 0.077 0.079 0 0 0 0
CRT-5 7 41 130 120 33 0.22 0.23 0.19 0.20 1 1 1 1
CRT-6 13 42 150 130 35 0.45 0.44 0.25 0.24 1 1 1 1
CRT-7 4 40 45 41 32 0.042 0.053 0.057 0.060 1 1 1 1
SYS-1 9 39 45 41 32 0.035 0.079 0.082 0.064 0 1 1 1
SYS-2 4 40 45 41 32 0.043 0.054 0.057 0.060 1 1 1 1
SYS-3 26 46 51 47 34 370 160 170 12 6 6 7 3
IRQ-1 4 40 46 42 32 0.057 1.6 0.44 0.047 1 4 1 1
TS-1 14 41 47 41 33 0.17 0.11 0.11 0.16 1 1 1 1
TS-2 19 120 190 220 110 24 24 47 9.1 9 10 13 8
TS-3 12 45 51 47 38 0.17 0.12 0.12 0.092 1 1 1 1
TS-4 12 46 51 47 38 0.17 0.12 0.12 0.094 1 1 1 1
TS-5 19 120 210 240 110 30 25 46 9.4 9 10 13 8
TS-6 14 40 46 41 33 0.30 0.11 0.11 0.16 1 1 1 1

Table 2. Performance of our synthesis engine on our machine-independent specifications. For each, we report: (1) the size of

the machine-independent specification, (2) verification time for a hand-writen implementation (in milliseconds, averaged

across 10 trials), and (3) synthesis time (in seconds, averaged across 5 trials) with all optimizations enabled. We also report

(4) the size of the synthesized assembly program.

Barrelish OS/161

Architecture ARM MIPS RISC-V x86_64 ARM MIPS RISC-V x86_64

Manual Lowering (LOC) 11 10 6 7 8 8 8 9

Automatable Lowering (LOC) 39 33 39 38 106 110 137 86

Table 3. Length of the lowering files, divided into two categories, for each OS and architecture.
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7.5 Performance

We measured the performance of our synthesis engine for veriication and synthesis. Our measurement platform
is an Intel Core i7-7700K clocked at 4.2 GHz with 64 GB RAM; our tests use only one of the four cores. We ran ive
trials for synthesis and ten trials for veriication, and each trial varied the solver RNG seed. We also randomized
the variable names used for solver communication by prepending a random ive-character alphabetical string,
which we ind produces signiicant variance in solver performance.

Verification. Table 2 reports the veriication performance of our synthesis engine on all use cases. We veriied
all machine-independent Alewife speciications against the hand-written assembly programs, which are taken
from existing implementations, to support the validity of our speciications. In most cases, the synthesis engine
veriies both our hand-written programs and the synthesized implementations in milliseconds. We are able to
verify the whole of thread-switch (TS), our longest hand-written program at 26 instructions, in less than one
second. During synthesis, our synthesis engine uses veriication as part of the CEGIS loop; because guessing is
much slower than veriication, this occupies only a small fraction of the total synthesis time, often < 1%.

Synthesis. Synthesis in general is diicult, and synthesis of assembly is particularly hard. The size of the space of
possible programs is combinatorial in the number of registers, memory locations, and immediate values, and
exponential in the number of instructions [Hu et al. 2019]. This especially afects the performance of syntax-
guided synthesis. As a irst-order approximation, in our machine descriptions, the overall sizes of the search
spaces for programs of length � are 240.3� in ARM, 236.6� in MIPS, 236.3� in RISC-V, and 274.7� in x86_64.
Table 2 summarizes the synthesis performance of our synthesis engine on all machine-independent specii-

cations with all optimizations enabled. We ran the experiments with a half-hour timeout; no cases timed out.
Our synthesis times vary widely with architecture and machine-independent speciication. Examining these use
cases more closely, we see that SWI-1 is a register spill, requiring a series of stores followed by a subtraction
that sets the stack pointer appropriately: each instruction is relatively independent and no value in the inal
state requires multiple arithmetic operations to calculate. In contrast, SWI-5 loads a value from memory, then
uses it to perform a conditional branch; this requires that the solver reason about conditional execution and
arithmetic to produce a correct program. This leads to entirely diferent synthesis times under each of the four
architectures, especially for ARM and RISC-V. Note that our synthesis engine discharges all two-instruction
machine-independent speciications in less than ten seconds.

7.6 Optimizations

Our optimizations are critical for performance and scaling, especially as the size of the program to synthesize
increases. To measure the efect of each optimization, we compare a baseline of our synthesis engine with no
optimizations enabled against the synthesis engine with each single optimization enabled. Figure 9 and Figure 10
show the results.
Many of our optimizations are heuristic: while accelerating synthesis on the majority of the use cases, they

may sometimes cause synthesis to slow down. In particular, read/write constraints and dependency analysis
work by providing additional constraints to the SMT solver. Experimentally, we ind that these help in most cases,
especially as synthesis time increases.

Read/write constraints exhibit a signiicant tradeof. They slow synthesis for small programs, but for programs
that take our baseline more than 100 seconds to synthesize, read/write constraints produce a geometric mean
speedup of 1.6×. We observe a maximum speedup of 12×, which occurs on a use case that takes 851 seconds to
run on average in the baseline condition. In the worst case, read/write constraints produce a slowdown of 5.0×,
which occurs on a use case that takes 4.9 seconds in the baseline condition.
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Dependency analysis is often beneicial. It provides additional constraints when values in the postcondition
are uniquely determined by the initial state. Dependency analysis makes our synthesis engine up to 35× faster,
which occurs on a use case that takes 307 seconds to run on average in the baseline condition. Dependency
analysis produces a geometric mean speedup of 1.4×. Dependency analysis induces an overhead typically less
than one second, which is signiicant only for small programs; the efect is visible as a small upward nonlinearity
at smaller times in Figure 9c. In the worst case, dependency analysis makes our synthesis engine 2.5× slower,
which occurs on a use case that takes 0.96 seconds in the baseline condition.
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(b) With and without read/write constraints.
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(c) With and without dependency constraints.

Fig. 9. Efect of optimizations on synthesis runtimes. Figure 9a shows all optimizations; the other plots show a single

optimization enabled, all against our baseline. Each data point represents the runtime under both conditions for one ma-

chine-independent specification and architecture, averaged over five trials (timeouts are counted as 1800 seconds). The blue

diagonal line represents equal time under both conditions, so that points below/right of the diagonal line demonstrate beter

performance with the optimization enabled. Gray contours provide guidelines for visually estimating speedup factor. The

upper and right boundaries of the plot represent an 1800 second timeout.
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(d) With and without rule-based decomposition.
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(e) With and without state gating.

Fig. 9. Efect of optimizations on synthesis runtimes (cont.).

Rule-based decomposition accelerates synthesis when its rules apply and the use case requires a long program;
it has suiciently low overhead that it does not impact performance when its rules do not apply. Rule-based
decomposition produces a geometric mean speedup of 2.0×. In the best case, rule-based decomposition synthesizes
programs that are not accessible to the baseline, such as context switch code; counting timeouts as 1800 seconds,
this is a speedup of 75×. Rule-based decomposition can sometimes slow down synthesis by spending time
exploring goal decompositions whose subgoals do not simplify the synthesis task; for example, when a subgoal
demands that an unnecessary value be loaded. In the worst case, we observe a slowdown of 3.8×.

State gating is efective, because it reduces the search space directly, limiting the options available to the SMT
solver, without ruling out possibly correct programs. State gating makes our synthesis engine up to 290× faster,
with a geometric mean speedup of 4.5×. In the worst case, we observe a slowdown of 1.6× on a use case requiring
an average to 3.6 seconds to synthesize in the baseline condition.

Used together, our optimizations cut the average total time required to synthesize all of our use cases by 25×
(from 38130 seconds to 1511 seconds), with a geometric mean speedup of 9.2×. One use case is accelerated 1380×:
while timing out in the baseline condition, our optimizations allow us to synthesize it in just over one second.

Currently, our synthesis engine is single-threaded; we included the virtual best curve in Figure 10 as a
demonstration of the performance approachable by a parallelized implementation, which would run several
diferent synthesis engine conigurations and random seeds for a single synthesis problem, taking the irst result
returned.

7.7 Our Experience Writing Specifications

While we have not conducted an extensive user study to determine how easily architects and kernel designers can
produce speciications, we have one related user study and our own experience from which to draw conclusions.
In collaboration with colleagues in Human Computer Interaction (HCI), a subset of our team developed an
interactive tool that let users give hints to the synthesis engine [Hu et al. 2021]. Although the study did not ask
users to produce speciications, they had to understand enough about the speciications and the architecture
to make suggestions about synthesis strategies, inclusion/exclusion of instructions, and hypotheses about the
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Fig. 10. Cactus plot comparing each optimization against baseline. Each plot shows for all machine-independent specifications

the average runtime across each of five trials that do not time out. Machine-independent specifications where all trials timed

out are omited. The Optimized curve shows the performance of our system with all optimizations enabled together. The

Virtual best curve simulates the performance of a system that takes the minimum time observed for each machine-indepen-

dent specification across all trials.

structure of the code that should be produced. All users, from novice to expert were able to give hints that
improved the time to synthesize kernel components.
Our own experience writing speciications is more directly relevant to the work presented here. Recall that

synthesis in Aquarium is designed to decouple expertise requirements: computer architects write machine speci-
ications and kernel developers write kernel speciications. The team responsible for writing all the speciications
presented in this paper included one experienced kernel developer and two others with minimal kernel develop-
ment experience. None of the team were computer architects. Nonetheless, we found that it took approximately
one day to write and debug a Cassiopea ile for a new architecture, even when the architecture was signiicantly
diferent from others we had written (e.g., producing the Cassiopea ile for MIPS after we had produced Cassiopea
iles for only x86-64 and ARM).

We found that writing the Alewife speciications took us about the same amount of time it takes to manually
produce a port of the machine dependent parts of a system. However, once written, every additional port can use
these speciications. In other words, using Aquarium is a time saver as soon as you start on a second port. Even
our team member who had never written kernel code before found it reasonably straight forward to produce
speciications. Further, we discovered that we could use existing ports to debug both our Alewife and Cassiopea
speciications. If a Cassiopea speciication is incorrect, and we try to verify the code in an existing port, the
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veriication fails12. Similarly, if we write an incorrect kernel speciication, veriication of the existing code also
fails. Overall, we found that Aquarium let us achieve our goal of transforming the � ports for � operating
systems problem into something that took time proportional to � + � rather than � ∗ � , as is the case for
traditional porting.

8 DISCUSSION

8.1 Aquarium Ecosystem

The Aquarium code generation model is to decompose procedures into blocks and generate the blocks one at
a time, by synthesis or by other techniques. These blocks must then be recombined into functions and iles,
connected to other parts of the system via include iles, and ultimately compiled and linked using make or a
similar tool. Aquarium handles this with separate tools that construct complete procedures from assortments of
code blocks [Holland 2020]. We have omitted discussion of this aquarium of tools and languages from this paper,
which focuses exclusively on our program synthesis tools.

8.2 Efort/Benefit Tradeof

As noted in Section 7.3, the line counts of speciication and lowering relative to output code are perhaps larger
than one might like. When the ratio of speciication to output code exceeds 1, it is tempting to think that just
writing the code directly might be preferable. Nonetheless, several factors suggest that synthesis is still promising.

First, verifying handwritten code still requires speciications (and lowerings), so these need to be written
regardless, and synthesis is always strictly less work.
Second, it is important to interpret these numbers in the correct context. Our speciication-to-code ratio

is reasonably competitive with other synthesis and veriication approaches, especially that of other work in
assembly-language synthesis and veriication. We ask how much speciication a user would need to write to
specify assembly for a new architecture. JitSynth [Van Gefen et al. 2020], another assembly synthesis approach,
does not report a spec-to-code ratio, but does at least require the user to write the state equivalence between the
source and target register machines. Vale [Bond et al. 2017] reports 2014 lines of spec, 3213 lines of implementation,
and 13558 lines of proof for 6943 generated lines of assembly (excluding lines of speciication, implementation,
and proof associated with deinitions of the ARM and Intel semantics). This corresponds to a spec-to-code ratio
of about 0.75, not counting lines of proof; we are unsure how much additional code would be required to extend
Vale to another architecture. The SeL4 proof iles in the spec/machine directories contain 2600 lines, while the
assembly iles in the arch directory contains 3380 lines; trimming comments and newlines, these counts are
about 2000 and about 1900 lines respectively. This corresponds to a spec-to-code ratio of about 1.05, which we
expect to correspond to the ratio of speciication needed to extend SeL4 to a new architecture. We think it is
reasonable to claim that the speciication efort for a new port is at least comparable to that of similar work.

Third, the cost of producing OS speciications is amortized across multiple ports: the same speciications can
be used for multiple architectures. We could dilute this ratio to an arbitrarily low number by including more
architectures in our evaluation. Moreover, having machine-independent OS speciications available provides
additional beneits, such as enabling veriication and analyses to reduce bugs and vulnerabilities. This beneit is
also portable to new architectures, which is not true of existing assembly veriication approaches. Given that
low-level code is often extremely diicult to debug, this is potentially a signiicant improvement.
Fourth, the synthesis approach reduces the level of mastery of architectural details required of the porter. A

porter need only follow the machine manual and not necessarily learn it well enough to write assembly code
from scratch. As an example, the authors of this paper had no prior experience writing RISC-V assembly. We
found the control register access instructions complex; especially when irst starting with the architecture, we

12This could also be due to a bug in the existing port, but we did not encounter any such situations.
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found it convenient to let our synthesis engine igure out how to use them. The required level of knowledge of
the ported OS is reduced as well. Currently, porting an OS to a speciic architecture using Aquarium requires the
porter to provide a lowering for each Alewife speciication. Only the lowering ile, which relates a particular
machine description to the OS speciication, requires knowledge of both the machine and the OS, and the lowering
ile is relatively small, ofering considerable savings of time and efort. Many of the blocks in our use cases
require few or no block-speciic lowering deinitions. For many of the rest, the lowering deinitions required are
straightforward and easily explained; the porter can provide them without necessarily having to fully understand
the blocks that use them. However, this does not apply to all the ported code; some code, such as the swi-handler
(SWI) example, still requires expert attention. It is expected that with more ports, a considerable fraction of the
port code will be derivable from speciications and comparatively simple lowering deinitions, especially as the
rest of the Aquarium ecosystem comes on line.
Note also that in some cases the need for porters to think about particular pieces of code disappears entirely.

For example, the only lowering deinitions speciic to the OS/161 thread-switch (TS) example are “Data-Structurež
deinitions that can be automatically generated. Consequently with our approach, the thread switch code no
longer requires any attention from the porter: it simply happens, just as all the kernel’s machine-independent
code simply happens when recompiled.

There are nonetheless cases where the cost/beneit ratio is an issue, especially for blocks that demand additional
functionality or expressiveness. One example of the latter is memory barrier instructions, discussed further in
Section 8.5.

8.3 Machine-Independence

It is tempting to assume that Alewife speciications cannot “reallyž be machine-independent and that all the
important parts of each speciication must actually be in the lowering iles. This is, perhaps surprisingly, not
true. Operating systems already have a machine-independent model of the abstractions in and functions of the
machine-dependent code, which underlies the interface to that code. Our Alewife speciications elucidate and
formalize this model. They can also, it turns out, frequently extend it: the kernel’s interface to machine-dependent
code is necessarily function-level, but our speciications are block-level. Consequently any machine-independent
structure in the steps that need to be taken, which is frequently substantial, can be written directly into the
Alewife speciications. For example, in the thread-switch (TS) example, there are six steps, and the nature of
each and the order in which they appear is necessarily the same on every machine, because at a suitable level of
abstraction, they must each do the same thing.
Furthermore, even for operations that cannot be further decomposed, such as turning on interrupts, the

speciication for the operation is the machine-independent speciication for what the kernel expects to happen:
some piece of machine state, corresponding to the interrupt state, is toggled on. While the machine-level state
and instructions that correspond to machine-independent functionality often vary from machine to machine,
higher-level OS code can and will use this block without regard for the implementation details. We can write a
machine-independent speciication in terms of an abstract version of this state, then use the Alewife compiler
to lower the speciication so it references the correct control register ield(s) for each target machine. Then the
synthesis engine can synthesize correct code given the machine description.

An OS architect writing Alewife speciications must understand the abstract model of the underlying machine
represented by the machine-independent-to-machine-dependent interface. In the case of Barrelish, where the
kernel is built as position-independent code to facilitate the “multikernelž architecture, this must take into account
diferences in the handling of position-dependent code on diferent machines. If porting to a newmachine changes
the behaviors observable from the machine-independent code, then the machine-independent speciications may
need to be strengthened. This is a common problem in OS porting. Every OS embeds a similar understanding in
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the structure of its machine-dependent interfaces, and altering it can require altering those interfaces and the
OS’s machine-independent code.

8.4 Formal ISA Descriptions

We expect machine descriptions to ultimately be supplied by architecture vendors. Architecture vendors already
internallymaintain extensively tested executable formalizations of their architectures; for instance, ARM internally
employs the ARM Speciication Language to describe processor semantics, and uses it to test both Verilog and
physical hardware. Fully formalizing the semantics of an ISA is a challenging problem; despite this, recent work
in formalizing ARM [Reid 2016] and various other architectures [Armstrong et al. 2019] supports the assertion
that vendor-supplied ISA descriptions suice to produce accurate formal descriptions of ISA semantics. Moreover,
the RISC-V foundation has oicially standardized an executable formal speciication of the RISC-V ISA semantics
in Sail [RISC-V 2019]. We expect that in the future, ISA semantics formalized by the architecture vendor will
become increasingly available and are here to stay.

We used a custom language for machine descriptions, Cassiopea, for two reasons. First, at the time of develop-
ment, formalized ISA semantics were less available than they are today. Second, our synthesis proof-of-concept
requires only a subset of the ISA semantics, and as observed by Bourgeat et al. [Bourgeat et al. 2021], many formal
methods projects use simpliied ISA semantics. Cassiopea itself, as discussed, is not a complete ISA description
language; it is one point on a spectrum of languages with varying levels of expressiveness.

ISA instruction selection. One critical issue is the level of completeness of the ISA description. A more complete
description could enable synthesis of more OS components; on the other hand, including more instructions
negatively impacts the synthesis performance and the ease of writing machine descriptions. Fortunately for
the latter, expressiveness does not require the ISA description to include most of the available instructions. For
example, the x86 architecture contains many instructions that are not necessary for full expressiveness, such
as the specialized vector operations in the 64-bit version. Excluding these reduced the work required for us to
produce ISA descriptions, although we expect that manufacturer-supplied ISA descriptions would be relatively
more complete.

Using only a suiciently expressive ISA description additionally helps with synthesis performance. This gives a
reasonably sized search space to allow the synthesis engine to create an initial runnable program. Once we have a
runnable program, we can apply superoptimization [Schkufza et al. 2013] or standard compiler techniques [Debray
et al. 2000] to obtain a more eicient program that uses a larger machine model.
Our expressiveness decisions were driven by our use case requirements. Consequently, as discussed in Sec-

tion 7.2, we constructed our machine models to include at least the following general-purpose components:

• Basic arithmetic and logical instructions on register-sized values: addition, subtraction, signed and unsigned
comparisons, bitwise operations, shifts.
• Conditional and unconditional branches. When architectures distinguish between short and long jumps,
short jumps suice for intra-block branching.
• Loads and stores for word-sized and byte-sized values, ensuring that we can express any manipulation of
an included memory region.
• A mechanism to load the address of an assembler label.

We also include the full set of general-purpose registers for each machine and any special-purpose registers used
by ordinary code, such as the lags word.

Beyond these, we include a selection of pertinent control registers and the instructions that manipulate them,
as this is a common OS operation. In general, each block we synthesize needs access to conceptually similar
pieces of machine state in each architecture.
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8.5 Limitations

What we do not synthesize. To strike the balance between expressiveness and complexity of the languages, there
are important pieces of OS code that we do not synthesize. We do not synthesize call and return instructions (nor
do we synthesize system call instructions). Procedure calls are diferent from ordinary assembly instructions.
There are two ways one could imagine synthesis interacting with procedure calls. The irst way is to let the
speciication explicitly indicate what procedure to call. This is the approach we take; we generate the call and
return instructions with other Aquarium tools [Holland 2020]. The second way is to make the speciication
more expressive about procedure calls and use synthesis to select a particular call from a set of choices. This is a
higher-level synthesis task, which is orthogonal to our goal of synthesizing assembly language.
Furthermore, there are small portions of OS code that are not merely machine-dependent, but are machine-

speciic, which cannot be expressed in a machine-independent way. Well-known examples include the code to
set up x86 segment tables and SPARC register window trap handling. A less well-known example that afects our
use cases is that ARM exception handlers must manipulate exception-related processor modes that do not exist
on other architectures.

Scalability of assembly synthesis. Furthermore, scalability poses a serious challenge. Synthesis of assembly is
particularly hard since the characteristics of assembly languages cause a combinatorial explosion in the number
of possible instructions that must be considered [Hu et al. 2019]. This detrimentally afects the performance of
syntax-guided synthesis.
This diiculty is a general feature of assembly languages. Even though our synthesis is parameterized on a

Cassiopea machine description, an approach specialized for a single machine or a low-level intermediate language
must still address the fundamental problem of search space size. Although our optimizations signiicantly reduce
the search space, it is still quite easy to write speciications for which synthesis always times out.
Currently, using pure inductive synthesis, we can generate up to ive (occasionally only four) instructions

in reasonable time; with our rule-based decomposition synthesis technique, we can synthesize programs up to
twelve instructions for certain well-structured speciications. Therefore, we expect to be able to handle most small
pieces of assembly code; besides the assembly blocks demonstrated in our use cases, Alewife and Cassiopea can
probably also handle frame push and pop operations, stack handling, and simple bit manipulations without further
extension. Although this is suicient for many machine-dependent OS components, some require signiicantly
longer implementations. For example, the MIPS general exception handler in NetBSD 9 is about 100 instructions.
For these our methodology of decomposition into steps becomes critical.
Ultimately, while blocks of four or ive instructions are small, they are still useful, since other tools in our

ecosystem allow composing them into larger chunks. For example, as discussed in Sections 7.1 and 8.3, the
thread-switch (TS) example is composed of six steps. Two of these we compile; the other four we synthesize.
Those four are all one instruction each on most or all architectures. Yet combined, these six blocks are a complete
kernel-level thread switch, similar to that found in any operating system kernel. The setjmp (SJ) and longjmp (LJ)
examples are similarly decomposed; combining the pieces gives the complete implementations. Other examples
are a subject of ongoing research; this includes the crt0 (CRT) use cases.

Concurrency and time. Cassiopea and Alewife do not model concurrency or time. Reasoning about time typically
involves temporal logics that are not SMT solvable. This is likely a fatal obstacle for working with real-time
operating systems (especially hard real-time), but for conventional systems, machine-dependent code handles
time only when interacting with timer hardware. We have not addressed this issue in current work; in future
work we plan to investigate whether the temporal aspects of timer control can be adequately abstracted away
such that the low-level speciications (and thus code synthesis) can be expressed in Alewife.
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We chose not to burden Cassiopea with support for reasoning about concurrent executions. Our use cases do
not require concurrency support. This is representative of the majority of the machine-dependent part of an OS:
most of it executes below the level where concurrent things happen. (For example, the thread switch code in our
use cases executes on a single CPU, on CPU-private data, and with interrupts already disabled by higher-level
machine-independent code; it itself need not reason about other CPUs, other threads running time-sliced on the
same CPU, or about being interrupted.)

However, this means we cannot model instructions related to concurrent executions. The machine-independent
code in a typical OS is written in terms of a small set of concurrency primitives. Producing these is part of
generating a new port, but one we decided not to tackle in this work. Currently, they are provided by the porter
as prewritten assembly blocks that can be composed with other blocks via other Aquarium tools. For a typical OS
this means implementations of spinlocks, a small set of atomic operations, and a small set of memory barriers.
Note that all of these are also small blocks of assembly code and likely amenable to synthesis using other tools,
though the speciications are nontrivial [Bornholt and Torlak 2017] and (particularly for memory barriers, which
are always either zero or one instruction) likely to signiicantly outweigh the output code.

Performance. Finally, we do not reason about the performance of synthesized code. Although the synthesis engine
chooses the shortest sequence of instructions that meets a speciication, this may not correlate to performance.
We assume that optimization can be performed after synthesis and block composition. Furthermore, low-level
OS code typically does not involve expensive computation. We discuss the related problem of synthesizing the
fastest possible assembly program, or superoptimization [Massalin 1987], in Section 9.

8.6 Other Approaches Considered

We explored several diferent approaches to improve scalability of synthesis. We briely summarize our explo-
rations.

SMT encodings. Before building our synthesis engine, we experimented with an assembly synthesizer written
in Rosette [Torlak and Bodik 2014] and explored language designs and theory combinations. We found that
combinations of integer and bitvector theories led to poor performance. We also experimented with using the
theory of arrays for updates to registers and memory, but found it markedly slower and abandoned it in favor of
a direct encoding.

Accumulation algorithm. Since our implementation of syntax-guided synthesis proceeds in stages, we experi-
mented with an accumulation algorithm. In general, in stage �, we attempt to synthesize an �-operation program.
Starting at stage 0 (which succeeds only if the speciication is vacuous), our synthesis engine proceeds to stage
� + 1 when synthesis at stage � fails, iterating until synthesis succeeds or times out. The accumulation method
attempts to reuse work done at stage � in later stages. Speciically, in a later stage � + � we use the last guessed
program from stage � as the initial � operations, and attempt to synthesize only the last � operations. Intuitively,
the �-operation program might be “almost correct,ž since it avoids many generated counterexamples. Accu-
mulation accelerates synthesis when the inal candidate guessed during synthesis for length � is a preix of a
correct program. Trying to synthesize � operations is typically much faster than synthesizing � + � operations,
so accumulation could be worthwhile and relatively cheap. If none of the accumulated program preixes can
be extended to a correct program, stage � + � proceeds to attempt to synthesize all � + � operations. When we
evaluated the efectiveness of accumulation we found that it can help, but infrequently. When it does helps, it
can result in signiicant improvements, making syntax-guided synthesis up to 7× faster on a couple of our use
cases. However, in the worst case, accumulation caused synthesis to take twice as long.
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Instruction dependency graph. We experimented with adding constraints to require speciic dependencies between
instructions, for example, requiring the locations read by the third instruction to intersect with the locations
written by the irst instruction. In essence, this enforces a given dependence graph over instructions in a block.
Although this can signiicantly reduce synthesis times, we could not ind suitable heuristics for indentifying
appropriate dependencies, since implementations of the same block on diferent machines often requires diferent
dependency graphs.

Multiple counterexamples per loop. We experimented with collecting multiple counterexamples per CEGIS loop
iteration, instead of the standard single counterexample per loop. We analyzed the efect on the total number
of CEGIS iterations and the synthesis time. Although additional counterexamples consistently reduced the
number of iterations, we found it diicult to determine an efect on overall synthesis time. We also tried retaining
counterexamples across stages as part of our accumulation approach. This also led to fewer iterations but
sometimes longer synthesis times. Ultimately, we found that additional counterexamples increased both the
variance and average of the total synthesis time.

Candidate buckets. Due to the high time cost of generating program candidates with multiple counterexamples,
we also experimented with grouping candidates across CEGIS iterations into several candidate buckets and
generating counterexamples that worked for all candidates in a bucket. This method led to less synthesis time for
one CEGIS iteration but more iterations in total for some use cases. The total synthesis time tended to increase
overall.

Interactive assembly synthesis. Assuage [Hu et al. 2021], based on our synthesis engine, presents a parallel
interactive assembly synthesizer that engages the user as an active collaborator. Users, who are familiar with
the high-level concepts of assembly languages, provide multiple types of guidance during synthesis, while the
synthesizer provides users with diferent representations of progress feedback. Assuage enables synthesis to scale
beyond current limits.

8.7 Correctness versus Security

It is reasonable to ask whether the Aquarium approach with program synthesis improves system security.

Guaranteed correctness can improve security. The machine-dependent parts of an operating system rarely imple-
ment policy; they translate policy decisions into hardware implementations. In this sense, a correct implementation
does enforce certain security properties, and a veriied implementation does provide some extra security assurance.
However, in general one must also verify that the machine-independent code invokes the machine-dependent
operations at the correct points, which is a much larger issue we do not attempt to address. Also note that many
of the possible errors in low-level code do not have subtle consequences: the system hangs or crashes, or violently
corrupts memory. Identifying the source of such problems can be extremely expensive, and veriication can save
much debugging time; however, identifying their existence is typically less challenging, so they are relatively
unlikely to survive long enough to become vulnerabilities in the ield.
For example, machine dependent code must properly update page tables. Failure to perform such operations

correctly, such as setting the wrong page permissions or using the wrong address-space ID, can create security
vulnerabilities. However, verifying the page table updates will not protect against the machine-independent
virtual memory system failing to revoke access permissions at the proper times. Correspondingly, setting the
wrong page permissions will in general result in denying accesses that should succeed, which will cause programs
(or the system) to crash, which in turn is relatively unlikely to be missed during development.

ACM Trans. Program. Lang. Syst.



38 • Hu and Lu, et al.

Furthermore, incorporating security related restrictions into synthesis is an interesting direction for future
investigation. Integrating them with the speciication or even adding as extra constraints can, in general, allow
rejecting vulnerable assembly programs during synthesis, which would provide further security guarantees.

Synthesis is not a security panacea. There is a large class of security bugs that arise when microarchitectural
implementation details leak through to the instruction level. Spectre and Meltdown [Hill et al. 2019], and
Rowhammer [Mutlu and Kim 2020] are, perhaps, the most well-known of such attacks. Synthesis and veriication
do nothing to address such issues. Cassiopea speciications describe the instruction set architecture; nothing in
the Aquarium ecosystem is aware of microarchitectural implementation details, so there is no way to reason
about any unwanted efects that might arise. However, given rules for mitigating such vulnerabilities, we expect
to be able to synthesize code that adheres to those rules. Further, as always, veriication against a speciication is
only as good as the correctness of the speciication.

8.8 Future Work

This work demonstrates the feasibility of assembly program synthesis for machine-dependent OS components.
However, there is plenty of opportunity for improvement and many additional directions to explore. In addition
to further improving the scalability of assembly synthesis, we see several opportunities to further reduce the
efort necessary to port OSes with Aquarium.
Ports have many similarities; it is standard practice to begin a port by copying an existing implementation

for a similar machine [Li et al. 2004]. Since an existing OS implementation often exists, it may be possible to
synthesize OS speciications of machine-dependent components from existing implementations or to accelerate
synthesis by reusing existing implementations. A key challenge is how to appropriately abstract away from
the speciics of the machine. We anticipate that accomplishing such synthesis would need a human in the loop.
Similarly, we anticipate synthesizing parts of a lowering ile from a given Alewife speciication and a Cassiopea
machine description iteratively with a human in the loop. However, this interaction sacriices automation and
requires further maintenance of the speciications and descriptions.

While developing machine descriptions, we found that a useful way to test the correctness of the descriptions
was to create machine-dependent speciications that should be unrealizable and use synthesis to try to ind an
assembly program satisfying the speciication. For example, ARM has certain lag register ields that must not be
changed by arithmetic instructions. Given a speciication that forced arithmetic operations and required illegal
ield changes, successful synthesis implies an error in the formalization of the machine. This approach helped us
ind errors in our Cassiopea descriptions. More generally, the use of program synthesis to ind errors in semantics
is worthy of further exploration.
There is a truism about machine descriptions, in the context of compilers, to the efect that they always

eventually become Turing-complete as they get extended to handle unexpected new cases. It would be interesting
to develop a scheme for evaluating how declarative (as opposed to “code-likež) a description language is. In
general, more declarative descriptions are easier to work with but less expressive and are prone to needing
extensions after their initial development, whereas more code-like descriptions are more expensive to use but
more expressive.

9 RELATED WORK

Our work lies at the intersection of the programming languages and operating systems.

Program Synthesis. Modern program synthesis began in 2006 with the introduction of Sketch [Solar-Lezama
et al. 2006], in which a programmer provides a partial program and speciications for “holesž in the program,
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and Sketch ills in the holes. Following this work, counter-example guided inductive synthesis (CEGIS) [Solar-
Lezama 2008] generalizes sketching for ininite state programs. However, for ininite state programs, the veriier
is typically an unsound, bounded model checker. Although we use CEGIS, we restrict ourselves to inite state
programs.
Another category of program synthesis, programming by example (PBE), takes input-output examples to

demonstrate desired program behaviors [Gulwani et al. 2017; Singh and Gulwani 2015]. In the assembly pro-
gramming context, examples that include concrete machine state are much more challenging to provide than are
formal speciications.

While the DSLs used in early CEGIS systems, e.g., [Solar-Lezama et al. 2005; Solar-Lezama et al. 2006], handle
many of the same concepts as does Cassiopea (e.g., precise bit manipulation), the problem of synthesizing assembly
code is signiicantly harder than that of synthesizing high-level languages. OS machine code manipulates only
untyped memory and worse, all state is global. While programs in high-level languages contain these features,
they are typically used parsimoniously. In contrast, untyped memory and global state are inherent to, and
unavoidable in, assembly code. Consequently, assembly code synthesis has enormous search spaces that are
exponential in program length and combinatorial in the number of instructions (at least the dozens), registers
(also dozens), memory locations (possibly the hundreds or thousands if one considers kernel structures, such as
page tables), and immediate values.

Superoptimization and Assembly Synthesis. To the best of our knowledge, the irst encoding of assembly language
into SMT was the Stoke algorithm for stochastic superoptimization [Schkufza et al. 2013]. The superoptimization
problem for machine code [Bansal and Aiken 2006; Massalin 1987; Phothilimthana et al. 2016] is: given a piece
of machine code and an execution context, ind the lowest cost semantically equivalent piece of code. Stoke
formulates correctness and performance improvement into a cost function, then uses a Markov Chain Monte
Carlo sampler to ind an implementation that, with high probability, outperforms the original (already optimized
by LLVM [Lattner and Adve 2004]). Superoptimizers work on straight-line, intraloop, intraprocedural code.

Superoptimization avoids some challenges presented by the general synthesis problem: irst, a superoptimizer
can fail to optimize a snippet, since the original snippet can be used instead. In contrast, if Aquarium fails to
synthesize a snippet, it is a showstopper. Second, superoptimization is bootstrapped by a correct snippet of code
to be optimized; in contrast, we have only a declarative, machine independent speciication and must produce
a working implementation. This rules out, for example, subdividing the problem by computing intermediate
machine states to use as subgoals.
Srinivasan and Reps also consider the problem of synthesizing assembly programs from semantic speciica-

tions [Srinivasan and Reps 2015; Srinivasan et al. 2016, 2017], developing several synthesis optimizations similar
to ours. Like us, they use a divide-and-conquer scheme that attempts to ind independent sub-speciications that
can be solved separately. Whereas their algorithm divides speciications greedily, our rule-based decomposition
(Section 6.3.4) divides lazily, when we ind that a speciication cannot be solved by a one-instruction program.
We use an ordering heuristic to select the split that should be considered next. Their conquer phase exhaustively
enumerates instruction opcode and register arguments, using CEGIS to solve for immediate arguments. Using
enumeration means that their conquer phase does not scale beyond two- or three-instruction programs, whereas
our fully solver-based CEGIS can synthesize certain sequences up to nine instructions long. Their footprint-based
pruning approach can be compared to our read/write constraints. Their bits-lost pruner is similar to our depen-
dency constraints (Section 6.3.3) in that it prunes program preixes that discard necessary dependencies, but it
employs iner-grained input tracking ś at the level of bits rather than locations ś and coarser availability tracking
ś at the level of whole program state rather than locations. Since their source code is not available, we cannot run
a direct performance comparison.
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Van Gefen et al. [Van Gefen et al. 2020] synthesize components of JIT compilers that produce sequences of
assembly instructions which correspond to instructions in kernel-level DSLs such as eBPF. They use a metasketch-
based approach that optimizes synthesis using syntactic constraints on the output assembly programs. Their
pre-load sketches load immediate values used by the rest of the program; our rule-based decomposition can do
this in some cases, in particular when the program requires a value found at a label or in memory. Their read-write
sketches constrain which instructions can be used depending on whether they access registers, memory, or
both. This optimization can be compared to our read/write constraints and dependency constraints, which use
assertions to restrict the search space according to a sound summary of instruction semantics. Our approach is
more precise in that it can constrain instructions based on accesses to speciic registers and memory locations as
opposed to accesses to any register or any memory location.

Optimization in Synthesis. Our dependency analysis represents one way to use abstraction to constrain search.
Other works have found this general approach efective. In some sense CEGIS is such an approach; the abstraction
it considers is the program behavior on a speciic set of inputs. The Storyboard Programming [Singh and
Solar-Lezama 2011] framework starts from sketches and synthesizes imperative programs that manipulate data
structures using speciications that constrain the desired abstract behavior.

Cosette [Chu et al. 2017; Wang et al. 2018] searches for input tables that distinguish between two SQL queries
by causing them to produce diferent outputs. To accelerate search, Cosette constrains input tables to contain
only those tuples that can possibly afect the query output. Cosette inds these constraints by using the abstract
semantics of SQL to obtain provenance predicates representing facts about input tuples that could pass through a
query. Provenance predicates resemble our dependency analysis inasmuch as they are constructed by following
dependencies of output on input; Cosette uses the abstract semantics of SQL to make provenance predicate
discovery tractable. Our approach difers in that we reduce a program search space by introducing constraints on
program abstract behavior.
Much like our Cassiopea DSL is an executable encoding of instruction semantics, Vale [Bond et al. 2017]

encodes the semantics of each assembly instruction as an snippet of Dafny [Leino 2010]. While Vale enables
veriication of assembly snippets using Dafny’s pre- and postconditions, we use Alewife, a purpose-built DSL
for speciications. Vale does not enable synthesis. An interesting avenue of future work would be to extend our
synthesis work to the domain of cryptographic functions with Vale’s use cases.

Synthesis for Operating Systems. In the late 1980’s and early 1990’s, several groups experimented with OS cus-
tomization [Bershad et al. 1995; Endo et al. 1996; Engler et al. 1995], performance optimization [Liedtke 1995],
and specializing code to improve performance [Mosberger and Peterson 1996; Pu et al. 1988]. The specialization
approach produced two interesting OS synthesis projects: The Synthesis Kernel [Pu et al. 1988] and Scout [Mos-
berger and Peterson 1996], both of which were based on the observation that OSes must handle all cases, although
the vast majority of the time they are executing speciic cases, where many of the decisions throughout a code
path are determined a priori by system call parameter values. Creating versions of these code paths specialized
to a given parameter improves performance. The Synthesis Kernel was custom-built to support this kind of
synthesis. Scout took a similar approach, synthesizing fast-path implementations for network functionality.
The Synthesis Kernel and Scout both difer from Aquarium in two ways. First, they create customized code

paths from existing general components, which difers from Aquarium’s synthesis using high level, machine-
independent speciications. Second, they perform runtime synthesis, relying on knowing speciic parameter
values. These approaches are orthogonal to ours; it is possible to combine such runtime approaches with modern
program synthesis techniques.

More recently, Termite [Ryzhyk et al. 2009] and Termite-2 [Ryzhyk et al. 2014] synthesize device drivers. These
use a diferent approach to synthesis (reactive synthesis rather than CEGIS) and synthesize to a C subset rather
than assembly. More importantly, though, they concentrate on iguring out what to do, that is, what sequence of
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state changes to make, whereas our work concentrates primarily on iguring out how to make state changes, that
is, the exact assembly instructions. One could imagine a system where something akin to Cassiopea igured out
how to issue the device state changes directed by Termite-2, or where something akin to Termite-2 was used to
igure out the speciications for the assembly code blocks Cassiopea generates. Thus this work is complementary
to ours.

10 CONCLUSIONS

We present the Aquarium approach to program synthesis, part of a collection of languages and tools to au-
tomatically construct machine-dependent OS code. This paper focuses on machine-dependent assembly code
synthesis. We developed two domain speciic languages, Alewife and Cassiopea, to specify OS functionality and
describe machine instruction set architectures, respectively. The Alewife compiler compiles machine-independent
speciications into machine-dependent speciications, while the Cassiopea synthesis engine synthesizes the
implementations in assembly language for speciic machines.
With Alewife, we have made a irst approach to machine-independent speciication of machine-dependent

components. We can readily specify some parts of the OS (e.g., interrupt and cache handling) and not so readily
specify others (e.g., boot code, drivers, concurrency primitives). We also demonstrated a collection of optimizations
for improving synthesis performance. These do not fully address the scalability challenges but do improve program
synthesis for an unusual domain.

We validated our tools with 35 synthesis use cases taken from two preexisting operating systems, deployed on
four real machine architectures. For most of our use cases, synthesis inishes in a reasonable time, typically a few
minutes, although some use cases are beyond our ability to synthesize.
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A CASSIOPEA AND ALEWIFE LANGUAGE DEFINITION

A.1 Notation

In the abstract syntax, type judgments, and semantics judgments we use italics for metavariables (e.g., �) and
for words corresponding to types in the abstract syntax (e.g., declaration). We use typewriter font for words
that correspond to language keywords. The notation �� means “a sequence of one or more � , each to be referred
to elsewhere as ��ž. If there are no references outside the overbar, the � subscript may be left of. Epsilon (�)
appearing in syntax represents an empty production. The notation ". . ." represents a string literal with arbitrary
contents.

Bitvectors (machine integers) may be any width greater than zero. Bitvector constants are represented as 0bC,
which can be thought of as an explicit sequence of zeros and ones. The number of bits in a bitvector constant
(that is, the number of digits) gives its type. Thus, 0b00 and 0b0000 are diferent. In the concrete syntax, bitvector
constants whose size is a multiple of 4 can also be written in the form 0xC, where C is a hexadecimal constant.
These are desugared in the parser and not shown further in this document.

The Cassiopea and Alewife syntaxes are disjoint. Some elements are the same in each, but these are speciied
separately regardless. They use the same metavariables as well, which should not be mixed; any language
construct in a judgment should be all Cassiopea or all Alewife. In a few places mixing is needed, in which case
the translation deined in Section A.7 is applied to allow inserting Alewife fragments into Cassiopea terms. The
Alewife rules in Section A.6 do use the same environments as the Cassiopea rules. These should be construed as
holding only Cassiopea elements. Further details can be found in Section A.6.

A.2 Cassiopea Overview

This section covers the abstract syntax for Cassiopea.
Cassiopea is a register-transfer-list style language: it models instructions as non-Turing-complete procedures

that update a machine state. Its executable semantics are covered in Section A.4.
We model the machine from the assembly-language programmer’s perspective. In particular, we do not treat

memory as a huge block of address space but instead treat it in small chunks passed in from somewhere else.
We model both control registers and general-purpose registers as well as other machine state such as whether
interrupts are enabled.

Furthermore we must allow assembler labels, which have addresses, but those addresses are not resolved until
after programs are compiled and linked and must be treated as abstract.

Notation.We use the following metavariables:
x, y, z Program variables (binders)
r Registers (abstract)
C Integer constants (written in decimal)
0bC Bitvector constants (written in binary)
� Types
v Values
e Expressions
S Statements
i, j Rule-level integers
(Other constructs are referred to with longer names.)
A number of constructs are lists (with a null case and a cons case) ś these are written out in longhand so

that typing and semantic judgments can be applied explicitly to each case, in order to, for example, propagate
environment updates correctly.

Identiiers and Variables. Identiiers are divided syntactically into seven categories:
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(Cassiopea Types)

� F �base | �mem | �func

�base F () | int | bool | string | x� | C bit

| �reg | �regs | �label

�reg F C reg

�regs F C reg set

�label F C label

�mem F C1 bit C2 len C3 ref

�func F �base� → �base

(Cassiopea Operators)

unop F − | b− | ¬ | bnot

binop F = | ≠ | + | − | ∗ | / | < | <= | > | >=

| && | | | | ⊕

| >> | >>� |<< | band | bor | bxor

| b+ | b− | b∗ | b/

| b< | b<= | b> | b>=

| bs< | bs<= | bs> | bs>=

| ∪ | ∩ |⊆| \

(Cassiopea Values)

ṽ F v | fail

v F true | false | C | 0bC | ". . ."

| r | (xmem, C)

(Cassiopea Expressions)

e F ṽ | x

| e.txt

| xfunc (e)

| unop e

| e1 binop e2

| e[C] | e[C1, C2]

| let x : �base = e1 in e2

| if e1 then e2 else e3

| (xmem, e)

| ∗e | fetch(e,C)

| branchto

| {x1, . . . , x� }

| ∥e∥ | e1 ∈e2

Fig. 11. Cassiopea types, values, operators, and expressions.

• xmem are identiiers bound to memory regions, which are second-class.
• xfunc are identiiers bound to functions, which are second-class.
• xproc are identiiers bound to procedures, which are second-class.
• xop are identiiers bound to instructions (“operationsž), which are akin to procedures but distinguished
from them.
• x� are identiiers for type aliases, which are bound to base types in declarations.
• xmodule are the names of “modulesž, which are used to select among many possible groups of lowering
elements.
• Other identiiers x are used for other things, and should be assumed to not range over the above elements.

Note that all identiiers live in the same namespace, and rebinding or shadowing them is not allowed. All these
identiiers can be thought of as variables, in the sense that they are names that stand for other things. All of them
are immutable once deined, including the ordinary variables x that contain plain values.

Types. Types are divided syntactically into base types (integers, booleans, strings, bitvectors, etc.) and others
(memory regions and functions). Functions may handle only base types. Furthermore, memory regions and
functions are second-class for reasons discussed below and are excluded in various places in the syntax and the
typing rules.
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We use index typing to capture the bit width of values.
Registers. Registers are represented in the speciication with the metavariable � , which stands for the under-

lying abstract identity of a register. Declaring a register, e.g., with letstate x : C reg as shown in Figure 12,
allocates a fresh register � and binds the variable x to it. A subsequent declaration of the form let y : C reg = x

creates another variable y that refers to the same underlying register. One might think of registers as numbered
internally. We use the form letstate control x : C reg to declare speciic control registers, which are treated
diferently by the framing rules. The additional keyword dontgate inhibits state gating for the register; this
should be used for lags registers and anything similar that is implicitly used by all ordinary code.

Some registers have associated with them a text form, which is declared separately and is the form an assembler
expects to parse. The synthesis engine uses this to extract an assembly program from Cassiopea’s internal
representation. It is referred to by attaching the suix .txt to the/a register variable. As some registers are
not directly addressable by the assembler (e.g., they might be subields of some larger addressable unit or non-
addressable internal state), not all registers have a text form. This is not readily checked statically without
additional information, so invalid .txt references fail at assembly code extraction time.

The type of a register is C reg, which is a register that holds a C-bit bitvector. The bitvector value in question
can be updated by assigning a new value; this is a statement (e1 : = e2) and can only happen in places where
statements are allowed. The construct ∗e reads a register.
The reader will note that the semantics rules for machines and declarations do not provide initial values for

registers. Instead, executions are deined in terms of some initial register state (and also some memory state),
which is required to have the right registers to match the machine deinition. This allows reasoning about the
execution of programs and program fragments in terms of many or all possible initial states. These issues are
discussed further below.

Memory. A memory region has the type C1 bit C2 len C3 ref, shown in Figure 11. This refers to a memory
region that has C2 cells, each of which stores a bitvector of width C1. This memory region is addressed with
pointers of width C3. Note that we assume byte-addressed machines, and for the purposes of both this speciication
and our implementation, we assume bytes are 8 bits wide. (This restriction could be relaxed if we wanted to
model various historic machines.) Thus a memory region of type 32 bit 4 len 32 ref has 4 32-bit values in it,
which can be addressed at byte ofsets 0, 4, 8, and 12. Memory regions and registers are mutable state.

Memory regions are named with identiiers. These names, and memory regions themselves, are not irst class;
variables are not allowed to range over them. Also note that memory regions are a property of programs (and
thus are declared in speciications) and not a property of the machine as a whole.

Pointers. A pointer literal has the form (xmem, C), in which xmem is the name of a memory region and C is the
ofset, shown in Figure 11. Because memory regions are second-class, xmem must be one of the available declared
memory regions. Pointer literals exist in the abstract syntax, but are not allowed in the concrete syntax except in
speciications. The only way to get a pointer value is to look up a label (discussed immediately below) or have it
provided in a register as part of the initial machine state.
A pointer literal is treated as a bitvector of the width appropriate for pointers to the memory region, so one

can appear in a register or in memory. However, we enforce a restriction (not captured in the semantic judgments
so far) that no value in the initial machine state, whether in a register or in memory, is a pointer unless required
to be so by the precondition part of the speciication. All other values are restricted to be plain bitvector values.
Addition and subtraction are allowed on pointers and they change the ofset, but other bitvector operations

(e.g., multiply) are disallowed and fail. Similarly, attempting to fetch from or store to a plain bitvector that is not
a pointer fails. Note however that we do not statically distinguish pointers and plain bitvectors. (We could have
used low-sensitive typing to reason about when registers and memory cells contain pointers and when they do
not; but this adds substantial complexity and for our problem domain does not provide signiicant value.) Instead,
we step to failure at runtime. This can be seen in the semantic judgments.
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(Cassiopea Statements)

S F S; S

| xproc (e)

| let x : �base = e in S

| for x ∈ (C1 . . .C2) do S

| if e then S1 else S2

| e1 : = e2

| store(e1,�) ← e2

| BRANCH(e)

| assert(e)

| skip

| crash

(Cassiopea Declarations)

decls F � | decl; decls

decl F type x� = �base

| let x : �base = e

| let x .txt = e

| def xfunc x� : �base� → �base = e

| proc xproc x� : �base� → () = S

| letstate x : �reg

| letstate control x : �reg

| letstate control dontgate x : �reg

| letstate xmem : �mem

| letstate xmem : �mem with x

defops F � | defop; defops

defop F defop xop {txt = e, sem = S}

| defop xop x� : �base� {txt = e, sem = S}

Fig. 12. Cassiopea statements and declarations.

Fetching from a pointer takes the form fetch (e,C). Storing to a pointer takes the form store(e1,�) ← e2.
The extra constant C speciies the width of the cell pointed to. (This is not an ofset.) Because we do not check
pointers statically, we do not know the memory region being pointed to and cannot look up its cell size; thus we
need the width explicitly for typing. It is checked at runtime.

Labels. As mentioned above, the term “labelž means an assembler label or linker symbol. These are constant
addresses that are not known at assembly time, so we must model them abstractly.
When one declares a memory region, one may attach a label to it, which is an additional identiier. This

identiier is created as a variable of type C label in Figure 11. The value is a pointer to the irst entry in the
region, and a single type subsumption rule allows this value to be accessed and placed in an ordinary register or
variable of suitable bitvector type. The intended mechanism is that for each machine the preferred instruction on
that machine for loading assembler symbols into a register can be deined to take an operand of type C label,
and then its value can be assigned to the destination register. This type restriction on the operand is suicient to
synthesize programs that use labels correctly.
Code Positions and Branching. Cassiopea code blocks may contain branches, either forward within the

block (branching backwards is forbidden) or to a single external assembler label outside the block. This model is
suicient for our block-oriented synthesis approach; more complex control low can be handled with multiple
blocks.
Consequently, a branch may either go to the single external assembler label (which terminates execution of

the current block) or skip zero or more instructions. We model branch targets as an 8-bit skip count. In Figure 12,
the statement BRANCH(0bC) skips 0bC instructions; BRANCH(0xff) jumps to the external assembler label. This
statement may be used to deine both conditional and unconditional branch instructions. Such instructions should
be deined to take an operand of type 8 bit to choose the branch destination. This magic number should then
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be printed to the output assembly text using the built-in function textlabel, which replaces it with a valid
assembler label, either the selected external label string or a scratch label attached to the proper destination
instruction.
Speciications do not need to be directly concerned with internal branches, which occur or not as needed.

However, external branches are part of a block’s speciication; typically the purpose of a block with an external
branch is to test some condition and then either branch away or fall through to the next block. It is thus necessary
to be able both to name the external label to use and to specify the conditions when it should be reached. For this
purpose a predicate branchto is provided. It may appear in the postcondition and governs the exit path from the
block: if forced to true, the block branches to the external assembler label, and if false, the block falls through
from its last instruction. The concrete syntax is branchto(dest) which also sets the assembler label used to
dest. It is not valid to name more than one such assembler label.
Note that the assembler labels used in branching are, though also assembler labels, a separate mechanism

unrelated to the labels attached to memory regions; they are code labels rather than data labels and inherently
work diferently.

Register Sets. Register sets are second-class elements intended to exist only as literals and only as the result
of lowering machine-independent speciications that cannot directly talk about speciic registers. Currently they
do not exist in the implementation. Register sets are not allowed to be operands to instructions to avoid state
explosions when synthesizing. For simplicity, this restriction is not shown in the abstract syntax or typing rules.
Functions and Procedures. Functions, deined with def in Figure 12, are pure functions whose bodies are

expressions. They produce values. They can read registers and memory, and can fail, but cannot update anything.
Procedures, deined with proc, are impure and their bodies are statements. They do not produce values, but they
may update the machine state. They are otherwise similar, and are intended to be used to abstract out common
chunks of functionality shared among multiple instructions in machine descriptions. Functions can also be used
for state hiding in speciications.

Functions and procedures are second-class; they may be called only by their own name and may not be bound
to variables or passed around. Furthermore, they are only allowed to handle base types: higher-order functions
are explicitly not supported.
Operations. Operations (deined with defop in Figure 12) are machine instructions or short sequences of

machine instructions. An operation takes zero or more operands and transforms the machine state as deined by
one or more statements. Operands are currently deined as expressions, but are restricted as follows:

• They may be values, but not string values, and not fail.
• They may be variables of register type.
• They may be variables of label type.

This restriction afects what the synthesizer tries to generate; a broader set of expressions may be accepted for
veriication or concrete execution and simply evaluated in place.

In general, we refer to “instructionsž and “operationsž interchangeably. However, there is an important
distinction between them: operations do not necessarily need to be single machine instructions. The text output
to the assembler is arbitrary and if desired can be computed on the ly based on the operand values. On some
platforms the assembler deines “synthetic instructionsž that potentially assemble tomultiple machine instructions,
or to diferent sequences based on the constants or registers used. This facility takes that a step further by allowing
the writer of the machine description to deine their own synthetics. Operations are the units in which Cassiopea
reasons about machine operations and the units in which Cassiopea generates programs and code fragments.

Other Constructs. e[C] and e[C1, C2] in Figure 11 extract a single bit and a slice, respectively, from a bitvector.
The ofsets are constants; if variable ofsets are needed, the value can be shifted irst. The width of the slice must
be constant for static typing.
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(Cassiopea Machines)

machine F decls; defops

(Cassiopea Programs)

inst F xop | xop e

insts F � | inst; insts

programF insts

(Cassiopea Lowerings)

modules F � | module; modules

module F module xmodule {decls; frame}

(Cassiopea Speciications)

frame F reg-modify : xregi

| mem-modify : (xmemi , e� )

frames F � | frame frames

pre F e

post F e

spec F decls; frames; pre; post

Fig. 13. Cassiopea machines, lowerings, programs, and specifications.

Machines, Lowering, Speciications, and Programs.

A machine is the full description of a machine architecture; it includes declarations (including types, constants,
registers, functions and procedures) and also instructions, shown in Figure 13. This is typically a standalone ile
but may be a set of iles referenced via include.

A (single) lowering is a collection of declarations used to instantiate elements in Alewife translations, shown
in Figure 13. These are placed into a module, with multiple modules per ile, so that the lowerings associated
with multiple related Alewife speciications can be kept together. The import xmodule directive enables sharing
common elements in one module xmodule across multiple speciications. The modules used to lower a speciication
are selected using the lower-with declaration in Alewife.

A spec (speciication) is a precondition and postcondition, which are boolean expressions, along with optional
permission to modify additional registers (the frame), shown in Figure 13. Cassiopea speciications are produced
by compiling Alewife speciications. Note that a module can also contain frame declarations; they are added to
any frame conditions provided in the Alewife speciication. A code block is permitted to modify any register
that is either explicitly listed in the frame declarations or mentioned in the postcondition, while it may read
any register mentioned in the precondition and any control register. This restriction is currently not adequately
captured in the semantics rules.

A program is a sequence of instruction invocations, shown in Figure 13.
Built-in Functions. Here is a partial list of the built-in functions in Cassiopea along with their types.

• empty : int → C reg set produces an empty register set of bit size C, where C is the value of the irst
argument. Note that this built-in function is dependently typed and treated specially during type checking.
The irst argument must be a constant.
• hex : C bit→ string prints numbers in hexadecimal.
• bin : C bit→ string prints numbers in binary.
• dec : C bit→ string prints numbers in decimal.
• lbl : C label → string prints labels (it returns the label identiier as a string). This is for data labels
attached to memory locations.
• textlabel : 8 bit→ string prints branch ofsets as assembler labels. This is for code labels, as described
above.
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(Type Well-Formedness)

Δ ⊢wf () Δ ⊢wf int Δ ⊢wf bool Δ ⊢wf string

C > 0

Δ ⊢wf C bit

C > 0

Δ ⊢wf C reg

C > 0

Δ ⊢wf C label

C > 0

Δ ⊢wf C reg set

C1 > 0, C2 > 0, C3 > 0

Δ ⊢wf C1 bit C2 len C3 ref

Δ(x) = � Δ ⊢wf �

Δ ⊢wf x

∀�,Δ ⊢wf �� Δ ⊢wf ��

Δ ⊢wf �� → ��

Fig. 14. Cassiopea type well-formedness.

• format : string → string . . .→ string formats strings. The irst argument is a format string; the
remainder of the arguments are substituted into the format string where a dollar sign appears followed by
the argument number (1-based). (A literal dollar sign can be inserted by using $$.) The number of additional
arguments expected is deduced from the contents of the format string.
• bv_to_len : int→ C2 bit→ C1 bit returns a new bitvector of size C1 (where C1 is the value of the irst
argument) with the same value as the second argument, up to the ability of the new size to represent that
value. Note that this built-in function is dependently typed and treated specially during type checking. The
irst argument must be a constant.
• bv_to_uint : C1 bit→ int converts a bitvector to unsigned int.
• uint_to_bv_l : int → int→ C1 bit converts an unsigned int (second argument) into a bitvector of size
C1, where C1 is the value of the irst argument. Note that this built-in function is dependently typed and
treated specially during type checking. The irst argument must be a constant.
• isptr : C bit→ bool tests at runtime if a bitvector-typed value is a pointer.

Note that some of these functions have their own typing rules, some of which are polymorphic in bitvector
size. We have not complicated the typing rules presented by including all of these as special cases.
Concrete Syntax.We do not describe the concrete syntax in detail here; however, it does not stray very far

from the abstract syntax. The operator precedence and most of the operator spellings are taken from C but most
of the rest of the concrete syntax is ML-style. There are also a few things desugared in the parser and not shown
in the abstract syntax. As already mentioned, bitvector constants whose size is a multiple of 4 can also be written
in the form 0xC. Syntax of the form �.hex, �.bin, and �.dec is converted to the built-in functions hex, bin, dec
respectively. These print either integers or bitvectors as strings in hexadecimal, binary, or decimal respectively.
The syntax x .lbl is similarly converted to the built-in function lbl. This produces the label (that is, the identiier
naming the label) as a string. Further the concrete syntax supports include iles via an include directive, which
is useful for sharing common elements between related descriptions.

A.3 Cassiopea Static Typing

This section describes the Cassiopea type system.
Environments. The type system uses two environments: Δ maps type alias names to their expansions, and Γ

maps variable names to types. Recall from the syntax that type alias names may only expand to base types; thus
type alias names can be treated as base types.

Well-Formedness. Since types syntactically include type alias names, we need to check the validity of those
names. We also insist that the widths of bitvectors be greater than zero. The judgment for this has the form

ACM Trans. Program. Lang. Syst.



52 • Hu and Lu, et al.

(Expression Typing)

Δ, Γ ⊢ C : int Δ, Γ ⊢ ". . ." : string Δ, Γ ⊢ true : bool Δ, Γ ⊢ false : bool

C ∈ {0, 1}k

Δ, Γ ⊢ 0bC : k bit

Δ ⊢wf �

Δ, Γ ⊢ fail : �

Γ(x) = � Δ ⊢wf �

Δ, Γ ⊢ x : �

Δ, Γ ⊢ e : �reg

Δ, Γ ⊢ e.txt : string

Δ, Γ ⊢ xfunc :
(
�base� → �base

)
∀i, Δ, Γ ⊢ e� : �base�

Δ, Γ ⊢ xfunc (e� ) : �base

Δ, Γ ⊢ e : �base1 ⊨ unop : �base1 → �base2

Δ, Γ ⊢ unop e : �base2

Δ, Γ ⊢ e1 : �base1 Δ, Γ ⊢ e2 : �base1 ⊨ binop : �base1 → �base1 → �base2

Δ, Γ ⊢ e1 binop e2 : �base2

Δ, Γ ⊢ e : C2 bit 0 ≤ C1 < C2

Δ, Γ ⊢ e[C1] : 1 bit

Δ, Γ ⊢ e : C3 bit 0 ≤ C1 < C2 ≤ C3 k = C2 − C1

Δ, Γ ⊢ e[C1, C2] : k bit

Δ, Γ ⊢ e1 : �base x ∉ Δ, Γ Δ, Γ [x ↦→ �base] ⊢ e2 : �2

Δ, Γ ⊢ let x : �base = e1 in e2 : �2

Δ, Γ ⊢ b : bool Δ, Γ ⊢ e1 : � Δ, Γ ⊢ e2 : �

Δ, Γ ⊢ if b then e1 else e2 : �

Δ, Γ ⊢ e : int Δ, Γ ⊢ xmem : _ bit _ len C ref

Δ, Γ ⊢ (xmem, e) : C bit

Δ, Γ ⊢ e : _ bit C > 0

Δ, Γ ⊢ fetch(e,C) : C bit

Δ, Γ ⊢ e : C reg

Δ, Γ ⊢ ∗e : C bit

Δ, Γ ⊢ x : C label

Δ, Γ ⊢ x : C bit Δ, Γ ⊢ branchto : bool

∀i ∈ (1 . . . k), Δ, Γ ⊢ x� : C reg

Δ, Γ ⊢ {x1, . . . , x� } : C reg set

Δ, Γ ⊢ e : C reg set

Δ, Γ ⊢ ∥e∥ : int

Δ, Γ ⊢ e1 : C reg Δ, Γ ⊢ e2 : C reg set

Δ, Γ ⊢ e1 ∈e2 : bool

Fig. 15. Cassiopea typing rules for expressions.

Δ ⊢wf � , shown in Figure 14. There is an intended invariant that only well-formed types may be entered into the
variable typing environment Γ, so that types taken out of it do not need to be checked for well-formedness again.

In a typing environment comprised of Δ mapping user-deined type names (type aliases) to types and Γ

mapping variables to types, we say that a type is well formed when all type names exist and refer to well-formed
types, and all indices are of type int and positive.

Expressions. Expressions produce values that have types. Because types appear explicitly in some expressions
(e.g., let), we need both environments, so the form of an expression typing judgment is Δ, Γ ⊢ e : � , shown
in Figure 15. This means that we conclude e has type � . Note that the .txt form is restricted to registers; it is
speciically for extracting the assembly text form of a register. We have not written out a separate rule for each
unary and binary operator. The types of operators are as shown in Figure 16. Note that the bitvector operators
are polymorphic in bit size.
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(Operator Expression Typing)
− int→ int

b− ∀C, C bit→ C bit

¬ bool→ bool

bnot ∀C, C bit→ C bit

= ≠ ∀�base, �base → �base → bool

+ − ∗ / int→ int→ int

< <= > >= int→ int→ bool

&& | | ⊕ bool→ bool→ bool

>> >>� <<

band bor bxor

b+ b− b∗ b/ ∀C, C bit→ C bit→ C bit

b< b<= b> b>=

bs< bs<= bs> bs>= ∀C, C bit→ C bit→ bool

∪ ∩ \ ∀C, C reg set→ C reg set→ C reg set

⊆ ∀C, C reg set→ C reg set→ bool

Fig. 16. Cassiopea typing rules for unop and binop.

(Statement Typing)

Δ, Γ ⊢ S1 Δ, Γ ⊢ S2

Δ, Γ ⊢ S1; S2

Δ, Γ ⊢ xproc :
(
�base� → ()

)
∀i, Δ, Γ ⊢ e� : �base�

Δ, Γ ⊢ xproc (e� )

Δ, Γ ⊢ e : �base x ∉ Δ, Γ Δ, Γ [x ↦→ �base] ⊢ S

Δ, Γ ⊢ let x : �base = e in S

x ∉ Δ, Γ Δ, Γ [x ↦→ int] ⊢ S

Δ, Γ ⊢ for x ∈ (C1 . . .C2) do S

Δ, Γ ⊢ e : bool Δ, Γ ⊢ S1 Δ, Γ ⊢ S2

Δ, Γ ⊢ if e then S1 else S2

Δ, Γ ⊢ e1 : C reg Δ, Γ ⊢ e2 : C bit

Δ, Γ ⊢ e1 : = e2

Δ, Γ ⊢ e1 : C1 bit Δ, Γ ⊢ e2 : C2 bit

Δ, Γ ⊢ store(e1,C2) ← e2

Δ, Γ ⊢ e : 8 bit

Δ, Γ ⊢ BRANCH(e)

Δ, Γ ⊢ e : bool

Δ, Γ ⊢ assert(e)

Δ, Γ ⊢ skip Δ, Γ ⊢ crash

Fig. 17. Cassiopea typing rules for statements.

Arguably the right hand argument of the shift operators should be allowed to be a diferent width. There is
one rule for pointer literals that covers both the expression and the value form. There is no rule (either in the
typing or in the semantics) that allows taking a subrange of a memory region as a new smaller region. We have
not needed this for our use cases, so for simplicity we do not support it.
Statements. Statements do not produce values. We still need both environments, though, so the form of a

typing judgment for a statement is Δ, Γ ⊢ S, shown in Figure 17. This means that S is well typed.
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(Declaration Typing)

Δ, Γ ⊢ � ▷ Δ, Γ

Δ, Γ ⊢ decl ▷ Δ′, Γ′ Δ
′, Γ′ ⊢ decls ▷ Δ′′, Γ′′

Δ, Γ ⊢ decl; decls ▷ Δ′′, Γ′′

Δ ⊢wf �base x� ∉ Δ, Γ Δ
′
= Δ[x� → �base]

Δ, Γ ⊢ type x� = �base ▷ Δ
′, Γ

Δ, Γ ⊢ x : �reg Δ, Γ ⊢ e : string

Δ, Γ ⊢ let x .txt = e ▷ Δ, Γ

Δ ⊢wf �base x ∉ Δ, Γ Δ, Γ ⊢ e : �base Γ
′
= Γ [x ↦→ �base]

Δ, Γ ⊢ let x : �base = e ▷ Δ, Γ′

Δ ⊢wf
(
�base� → �base

)

xfunc ∉ Δ, Γ Γ
′
= Γ [∀i, x� ↦→ �base� ] Δ, Γ′ ⊢ e : �base Γ

′′
= Γ [xfunc ↦→

(
x� : �base� → �base

)
]

Δ, Γ ⊢ def xfunc x� : �base� → �base = e ▷ Δ, Γ′′

Δ ⊢wf
(
�base� → ()

)

xproc ∉ Δ, Γ Γ
′
= Γ [∀i, x� ↦→ �base� ] Δ, Γ′ ⊢ S Γ

′′
= Γ [xproc ↦→

(
x� : �base� → ()

)
]

Δ, Γ ⊢ proc xproc x� : �base� → () = S ▷ Δ, Γ′′

Δ ⊢wf C reg x ∉ Δ, Γ Γ
′
= Γ [x ↦→ C reg]

Δ, Γ ⊢ letstate x : C reg ▷ Δ, Γ′

Δ ⊢wf C reg x ∉ Δ, Γ Γ
′
= Γ [x ↦→ C reg]

Δ, Γ ⊢ letstate control x : C reg ▷ Δ, Γ′

Δ ⊢wf C reg x ∉ Δ, Γ Γ
′
= Γ [x ↦→ C reg]

Δ, Γ ⊢ letstate control dontgate x : C reg ▷ Δ, Γ′

Δ ⊢wf C1 bit C2 len C3 ref xmem ∉ Δ, Γ Γ
′
= Γ [xmem ↦→ C1 bit C2 len C3 ref]

Δ, Γ ⊢ letstate xmem : C1 bit C2 len C3 ref ▷ Δ, Γ
′

Δ ⊢wf C1 bit C2 len C3 ref Δ ⊢wf C3 label

xmem ∉ Δ, Γ x ∉ Δ, Γ Γ
′
= Γ [xmem ↦→ C1 bit C2 len C3 ref] Γ

′′
= Γ
′ [x ↦→ C3 label]

Δ, Γ ⊢ letstate xmem : C1 bit C2 len C3 ref with x ▷ Δ, Γ′′

Δ, Γ ⊢ � ▷ Δ, Γ

Δ, Γ ⊢ defop ▷ Δ′, Γ′ Δ
′, Γ′ ⊢ defops ▷ Δ′′, Γ′′

Δ, Γ ⊢ defop; defops ▷ Δ′′, Γ′′

xop ∉ Δ, Γ Δ, Γ ⊢ e : string Δ, Γ ⊢ S Γ
′
= Γ [xop ↦→ () → ()]

Δ, Γ ⊢ defop xop {txt = e, sem = S} ▷ Δ, Γ′

Δ ⊢wf
(
�base� → ()

)
xop ∉ Δ, Γ ∀i, �base� ≠ string ∧ �base� ≠ () ∧ �base� ≠ �regs

Γ
′
= Γ [∀i, x� ↦→ �base� ] Δ, Γ′ ⊢ e : string Δ, Γ′ ⊢ S Γ

′′
= Γ [xop ↦→

(
x� : �base� → ()

)
]

Δ, Γ ⊢ defop xop x� : �base� {txt = e, sem = S} ▷ Δ, Γ′′

Fig. 18. Cassiopea typing rules for declarations.
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(Machine Typing)

Δbuiltin, Γbuiltin ⊢ decls ▷ Δ, Γ Δ, Γ ⊢ defops ▷ Δ′, Γ′

⊢ decls; defops ▷ Δ′, Γ′

(Speciication Typing)

⊢ machine ▷ Δ, Γ Δ, Γ ⊢ decls ▷ Δ′, Γ′

⊢ machine; decls ▷ Δ′, Γ′

∀i, Δ, Γ ⊢ xregi : C� reg

Δ, Γ ⊢ reg-modify : xregi

∀i, Δ, Γ ⊢ e� : int ∀i, Δ, Γ ⊢ xmemi : �mem

Δ, Γ ⊢ mem-modify : (xmemi , e� )

Δ, Γ ⊢ �

Δ, Γ ⊢ frame Δ, Γ ⊢ frames

Δ, Γ ⊢ frame frames

⊢ machine; decls ▷ Δ, Γ Δ, Γ ⊢ frame Δ, Γ ⊢ pre : bool Δ, Γ ⊢ post : bool

machine ⊢ decls; frames; pre; post

(Program Typing)

Δ, Γ ⊢ xop : (() → ())

Δ, Γ ⊢ xop

Δ, Γ ⊢ xop :
(
�base� → ()

)
∀i, Δ, Γ ⊢ e� : �base�

Δ, Γ ⊢ xop e�

Δ, Γ ⊢ �

Δ, Γ ⊢ inst Δ, Γ ⊢ insts

Δ, Γ ⊢ inst; insts

⊢ machine ▷ Δ, Γ Δ, Γ ⊢ program

machine ⊢ program

Fig. 19. Cassiopea typing rules for machine, specification, and program.

Declarations. Declarations update the environment. The form of a typing judgment for a declaration is
Δ, Γ ⊢ decl ▷ Δ′, Γ′, and a judgment for a list of declarations has the same form, shown in Figure 18. This means
that the declaration (or list) is well typed and produces the new environment on the right.
We impose an additional syntactic restriction on declarations found in a machine description (as opposed to

the additional declarations that may appear in a speciication): they may not use the expression forms that refer
to machine state (registers or memory), because when deining the machine, there is no speciic machine state to
refer to; any references would need to be quantiied. (That in turn is not allowed; while many SMT solvers now
support quantiied expressions, they generally do not perform well.)
Machines. A machine is some declarations followed by some defops, so the typing rule is just sequencing,

shown in Figure 19, but there is a wrinkle: the initial environment for the machine is not an input. Δbuiltin is the
(ixed) environment describing the built-in type aliases. (Currently there are none.) Γbuiltin is the environment
describing the types of built-in variables. This notionally includes the built-in functions. (But as mentioned
earlier some of them actually have their own typing rules.) The form of a typing judgment for a machine is
⊢ machine ▷ Δ, Γ. This means that the machine description is well typed and provides the environment on the
right for use of other constructs that depend on the machine. (Specs and programs are only valid relative to a
given machine.)
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Speciications. For speciications we need two helper rules, shown in Figure 19: one that applies an additional
list of declarations to a machine, which has the same form as the judgment on a machine; and one that says that
a frame (modiies list) is well typed, which has the form Δ, Γ ⊢ frames. This lets us write the real rule, which has
the form machine ⊢ spec and means that the speciication is well typed under the machine description.
Programs. A program is a sequence of calls to instructions. We need judgments of the form Δ, Γ ⊢ inst for a

single instruction and also Δ, Γ ⊢ insts for the sequence, shown in Figure 19. There are two cases for a single
instruction because of a minor glitch in formulation: because the overbar notation means “one or morež, there are
two cases in the syntax for instructions, one for zero operands and one for one or more operands; we need typing
rules for both cases. Meanwhile the type entered into Γ for a zero-operand instruction is unit to unit, not � to
unit, to avoid needing an additional form for types just for this case. (Notice that a one-operand instruction may
not have type unit to unit because unit is not allowed as an instruction operand, so the type is not ambiguous.)
These rules let us write a judgment for a program, which has the form machine ⊢ program and means that the
program is well typed relative to the machine.

Soundness. Our type system is sound: we include the necessary checks and failure states in the semantics so
that evaluation does not get stuck, even though some properties are not statically checked.

A.4 Cassiopea Semantics

This section deines the semantics of Cassiopea.
Environment. The execution environment Λ maps Cassiopea variables x to values v. For labels on memory

regions, each label maps to a pointer that points to the base (ofset 0) of the region associated with the label.
However, we take advantage of the polymorphism and dynamic typing of paper rules to also store the following
in the same environment:

• xfunc (function names) map to pairs {x� , e}, which give the list of argument names and the body for functions.
• xproc (procedure names) map to pairs {x� , S}, which give the list of argument names and the body for
procedures.
• xop (operation/instruction names) map to triples {x� , e, S}, which give the list of argument names, the
expression for the text form, and the body for operations.
• r .txt (the form for the text version of a register) maps to a value.
• The word EXTBRANCH maps to a branch state, which must be either ext or ·. This reports whether, after
executing a program, it branched to the external label or not.

Since identiiers are not allowed to overlap in well-typed programs, and register identities are not strings at all,
and EXTBRANCH is reserved, this usage creates no conlicts.

Note that xmem, x� , and xmodule do not appear in Λ as these require no translation/lookup at runtime.
Machine State. In addition to the execution environment, we also need a representation of machine state. We

deine two stores, one for registers and one for memory. The register store � maps registers r to values v. The
memory store � is more complicated: it maps pairs (xmem, C) (that is, pointer literals) to pairs (v,C� ), where v is
the value stored at that location and C� is the bit width. The bit widths of memory regions are invariant, both
across the region when they are declared and also over time. They are used to check the access widths appearing
in fetch and store operations. Also note that new entries cannot be created in either the register store or the
memory store, as real hardware does not permit such actions. The values stored in registers and memory regions
are restricted by the typing rules to bitvectors (whether constants or pointers) of the appropriate width.
Notice that stepping through the declarations does not initialize the machine state. We want to reason about

executions over ranges of possible starting machine states; so instead we provide a judgment that uses the typing
environments to restricts the stores to forms consistent with the declarations. This is discussed further below.
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(Expression Semantics)

Λ(x ) = v

Λ ⊢ (�, �, x ) ⇓ v

Λ ⊢ (�, �, e) ⇓ r Λ(r .txt) = v

Λ ⊢ (�, �, e.txt) ⇓ v

Λ ⊢ (�, �, e) ⇓ r r .txt ∉ Λ

Λ ⊢ (�, �, e.txt) ⇓ fail

∀i,Λ ⊢ (�, �, e� ) ⇓ v� Λ(xfunc ) = {x� , e} Λ[∀i, x� ↦→ v� ] ⊢ (�, �, e) ⇓ ṽ

Λ ⊢ (�, �, xfunc (e� ) ) ⇓ ṽ

Λ ⊢ (�, �, e) ⇓ v1 ṽ2 = unop v1

Λ ⊢ (�, �, unop e) ⇓ ṽ2

Λ ⊢ (�, �, e1 ) ⇓ v1 Λ ⊢ (�, �, e2 ) ⇓ v2 ṽ3 = v1 binop v2

Λ ⊢ (�, �, e1 binop e2 ) ⇓ ṽ3

Λ ⊢ (�, �, e) ⇓ 0bC C = b0 . . . bC� . . . bn

Λ ⊢ (�, �, e[C� ] ) ⇓ bC�

Λ ⊢ (�, �, e) ⇓ 0bC C = b0 . . . bC� . . . bC� . . . bn

Λ ⊢ (�, �, e[C� , C� ] ) ⇓ bC� . . . bC�

Λ ⊢ (�, �, e) ⇓ (xmem, C )

Λ ⊢ (�, �, e[_] ) ⇓ fail

Λ ⊢ (�, �, e) ⇓ (xmem, C )

Λ ⊢ (�, �, e[_, _] ) ⇓ fail

Λ ⊢ (�, �, e1 ) ⇓ v1 Λ[x ↦→ v1 ] ⊢ (�, �, e2 ) ⇓ ṽ2

Λ ⊢ (�, �, let x : �base = e1 in e2 ) ⇓ ṽ2

Λ ⊢ (�, �, e) ⇓ true Λ ⊢ (�, �, e� ) ⇓ ṽ�

Λ ⊢ (�, �, if e then e� else _) ⇓ ṽ�

Λ ⊢ (�, �, e) ⇓ false Λ ⊢ (�, �, e� ) ⇓ ṽ�

Λ ⊢ (�, �, if e then _ else e� ) ⇓ ṽ�

Λ ⊢ (�, �, e) ⇓ r � (r ) = v

Λ ⊢ (�, �, ∗e) ⇓ v

Λ ⊢ (�, �, e) ⇓ (xmem, C ) � (xmem,C ) = (v,C� )

Λ ⊢ (�, �, fetch(e,C� ) ) ⇓ v

Λ ⊢ (�, �, e) ⇓ (xmem, C ) � (xmem,C ) = (_,C� ) C� ≠ C�

Λ ⊢ (�, �, fetch(e,C� ) ) ⇓ fail

Λ ⊢ (�, �, e) ⇓ (xmem, C ) (xmem, C ) ∉ �

Λ ⊢ (�, �, fetch(e,C� ) ) ⇓ fail

Λ ⊢ (�, �, e) ⇓ 0bC

Λ ⊢ (�, �, fetch(e,C� ) ) ⇓ fail

Λ ⊢ (�, �, e) ⇓ C

Λ ⊢ (�, �, (xmem, e) ) ⇓ (xmem, C )

Λ(EXTBRANCH) = ext

Λ ⊢ (�, �, branchto) ⇓ true

Λ(EXTBRANCH) = ·

Λ ⊢ (�, �, branchto) ⇓ false

∀i ∈ (1 . . . k), Λ(x� ) = r�

Λ ⊢ (�, �, {x1, . . . , x� }) ⇓ {r1, . . . , r� }

Λ ⊢ (�, �, e) ⇓ {r1, . . . , rC }

Λ ⊢ (�, �, ∥e∥ ) ⇓ C

Λ ⊢ (�, �, e1 ) ⇓ r Λ ⊢ (�, �, e2 ) ⇓ {r1, . . . , r� } ∃i ∈ (1 . . . k), ri = r

Λ ⊢ (�, �, e1 ∈e2 ) ⇓ true

Λ ⊢ (�, �, e1 ) ⇓ r Λ ⊢ (�, �, e2 ) ⇓ {r1, . . . , r� } ∀i ∈ (1 . . . k), ri ≠ r

Λ ⊢ (�, �, e1 ∈e2 ) ⇓ false

Fig. 20. Cassiopea semantics for expressions.

Expressions. We describe expressions with a large-step operational semantics, shown in Figure 20. The form
of an expression semantic judgment is: Λ ⊢ (�, �, e) ⇓ v, which means that given the environment Λ and the
machine state �, � , the expression e evaluates to the value v. Expressions may read the machine state, but not
modify it. Expressions can fail; in addition to the explicit failure cases seen, some of the operators and built-in
functions can fail. For example, as mentioned earlier, attempting bitvector arithmetic other than addition and
subtraction on pointers will fail. Furthermore, division by zero fails.
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Note that we currently do not statically check (in the typing rules) that the .txt form is present for every
register or that it is deined for registers on which it is used. Thus we have an explicit failure rule for when no
matching declaration has been seen. We also have failure rules for bad fetch operations: if the length annotation is
wrong, if the pointer is not in the machine state (this covers both unaligned accesses and out of bounds accesses),
or if the value used is not a pointer. Similarly, we have failure rules for when bit indexing/slicing a pointer. We do
not, conversely, need explicit failure checks or rules for the bit indexes in the bit extraction/slicing constructs as
they are statically checked.

Also note that we include in the semantics the obvious failure propagation rules for when subexpressions fail.
We do not show these explicitly as they are not particularly interesting or informative; however, note that the
&& and | | logical operators short-cut left to right.
Statements. Unlike expressions, statements can change machine state. Thus, the form of a machine state

semantics judgment (also large step) is Λ ⊢ (�, �, S) ⇓ (� ′, � ′, S′, �), shown in Figure 21. This means that the
statement S evaluates to the irreducible statement S’ (which must be either skip or crash) and in the course of
doing so changes the machine state from �, � to � ′, � ′, and produces a branching state � , which can be either an
8-bit bitvector, the reserved value ext, or a dot (·). As with expressions, statements can fail. Explicit failure rules
are shown for bad stores (corresponding to the cases for bad fetches) and for a failed assertions. We also similarly
include, but do not show, the obvious failure propagation rules for cases where sub-statements, or expressions
within statements, fail.

Declarations. The semantics for declarations have judgments of the form Λ, (�, �) ⊢ decl ▷ Λ
′, shown in

Figure 22. This means that the given declaration updates Λ as shown. As stated above, we do not initialize the
machine state while handling declarations; this instead allows us to work with arbitrary (or universally quantiied)
machine states afterwards. However, because the let-binding declaration evaluates an expression, it potentially
needs access to a machine state. Consequently we write the rules so they accept a machine state as input, but do
not update it. In the case of machine descriptions, where there is no machine state, we pass empty environments;
let-binding declarations in machine descriptions are not allowed to reference machine state. In the case of the
additional declarations that accompany a speciication, we pass in the initial machine state; this allows values
from the initial machine state to be globally bound so they can be referred to in the postcondition.

We give irst the rules for a list of declarations, then the rules for the various declarations, then the rules for a
list of operation deinitions and a rule for a single operation deinition. Note that several of the declarations do
not update Λ, and nothing is placed in Λ for memory regions. For registers, only the mapping of the identiier to
its underlying register r is entered; nothing for r is inserted.

Machines. As with the typing rules, the semantics rule for a whole machine description integrates the initial
environment and gives a judgment of the form ⊢ machine ▷Λ′, shown in Figure 23. We also include a comparable
form that includes additional declarations, as it will be used below.

Programs. Instructions (or more precisely, Cassiopea operations) update the machine state, and we chose to
represent programs as lists of instructions rather than having dummy instruction forms for skip and sequence.
Consequently the form of the judgments is slightly diferent, and there are several of them, shown in Figure 24.
First, we can execute an individual instruction using the form Λ ⊢ (�, �, inst) → (� ′, � ′, �), meaning that the

instruction executes and updates the machine state �, � to � ′, � ′, producing the branching state � . Then, a list of
instructions executes using the form Λ ⊢ (�, �, insts, �) → (� ′, � ′, insts′, � ′), which means that the list steps to a
new list and updates both the machine state and the branching state. When the instruction list runs out, these
reduce to a shorter form via a judgment of the form Λ ⊢ (�, �, insts, �) → (� ′, � ′), which discards the instructions
and branching state and produces an output machine state. That in turn allows us to draw conclusions of the
form machine ⊢ (�, �, program) → (� ′, � ′), which means that a machine with the initial state �, � executes the
program to produce the new machine state (� ′, � ′).
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(Statement Semantics)

Λ ⊢ (�, �, S1) ⇓ (�
′, � ′, skip, ·) Λ ⊢ (� ′, � ′, S2) ⇓ (�

′′, � ′′, S′2, ·)

Λ ⊢ (�, �, S1; S2) ⇓ (�
′′, � ′′, S′2, ·)

∀i,Λ ⊢ (�, �, e� ) ⇓ v� Λ(xproc) = {x� , S} Λ[∀i, x� ↦→ v� ] ⊢ (�, �, S) ⇓ (�
′, � ′, S′, ·)

Λ ⊢ (�, �, xproc (e� )) ⇓ (�
′, � ′, S′, ·)

Λ ⊢ (�, �, e) ⇓ v Λ[x ↦→ v] ⊢ (�, �, S) ⇓ (� ′, � ′, S′, ·)

Λ ⊢ (�, �, let x : �base = e in S) ⇓ (� ′, � ′, S′, ·)

∀i ∈ (C1,C1 + 1, . . . ,C2), Λ[x ↦→ i] ⊢ (�� , �� , S) ⇓ (��+1, ��+1, skip, ·)

Λ ⊢ (��1
, �C1

, for x ∈ (C1 . . .C2) do S) ⇓ (�C2+1, �C2+1, skip, ·)

Λ ⊢ (�, �, e) ⇓ true Λ ⊢ (�, �, S) ⇓ (�� , �� , S� , ·)

Λ ⊢ (�, �, if e then S else _) ⇓ (�� , �� , S� , ·)

Λ ⊢ (�, �, e) ⇓ false Λ ⊢ (�, �, S) ⇓ (� � , �� , S� , ·)

Λ ⊢ (�, �, if e then _ else S) ⇓ (� � , �� , S� , ·)

Λ ⊢ (�, �, e1) ⇓ r r ∈ � Λ ⊢ (�, �, e2) ⇓ v � ′ = � [r ↦→ v]

Λ ⊢ (�, �, e1 : = e2) ⇓ (�
′, �, skip, ·)

Λ ⊢ (�, �, e1) ⇓ (xmem, C) � (xmem,C) = (_,C� ) Λ ⊢ (�, �, e2) ⇓ v � ′ = � [(xmem, C) ↦→ (v,C� )]

Λ ⊢ (�, �, store(e1,C� ) ← e2) ⇓ (�, �
′, skip, ·)

Λ ⊢ (�, �, e1) ⇓ (xmem, C) � (xmem,C) = (_,C�) C� ≠ C�

Λ ⊢ (�, �, store(e1,C� ) ← e2) ⇓ (�, �, crash, ·)

Λ ⊢ (�, �, e1) ⇓ (xmem, C) (xmem, C) ∉ �

Λ ⊢ (�, �, store(e1,C� ) ← e2) ⇓ (�, �, crash, ·)

Λ ⊢ (�, �, e1) ⇓ 0bC

Λ ⊢ (�, �, store(e1,C� ) ← e2) ⇓ (�, �, crash, ·)

Λ ⊢ (�, �, e) ⇓ true

Λ ⊢ (�, �, assert(e)) ⇓ (�, �, skip, ·)

Λ ⊢ (�, �, e) ⇓ false

Λ ⊢ (�, �, assert(e)) ⇓ (�, �, crash, ·)

Λ ⊢ (�, �, e) ⇓ 0

Λ ⊢ (�, �, BRANCH(e)) ⇓ (�, �, skip, ·)

Λ ⊢ (�, �, e) ⇓ 0bC 0x00 < 0bC < 0xff

Λ ⊢ (�, �, BRANCH(e)) ⇓ (�, �, skip, 0bC)

Λ ⊢ (�, �, e) ⇓ 0xff

Λ ⊢ (�, �, BRANCH(e)) ⇓ (�, �, skip, ext)

Fig. 21. Cassiopea semantics for statements.
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(Declaration Semantics)

Λ, (�, �) ⊢ � ▷ Λ

Λ, (�, �) ⊢ decl ▷ Λ′ Λ
′, (�, �) ⊢ decls ▷ Λ′′

Λ, (�, �) ⊢ decl; decls ▷ Λ′′

Λ, (�, �) ⊢ type x� = �base ▷ Λ

Λ ⊢ (�, �, e) ⇓ v

Λ, (�, �) ⊢ let x : �base = e ▷ Λ[x ↦→ v]

Λ ⊢ (�, �, x) ⇓ r Λ ⊢ (�, �, e) ⇓ v

Λ, (�, �) ⊢ let x .txt = � ▷ Λ[r .txt ↦→ v]

Λ
′
= Λ[xfunc ↦→ {x� , e}]

Λ, (�, �) ⊢ def xfunc x� : �base� → �base = e ▷ Λ′
Λ
′
= Λ[xproc ↦→ {x� , S}]

Λ, (�, �) ⊢ proc xproc x� : �base� → () = S ▷ Λ′

Λ
′
= Λ[x ↦→ r] r fresh

Λ, (�, �) ⊢ letstate x : �reg ▷ Λ
′

Λ
′
= Λ[x ↦→ r] r fresh

Λ, (�, �) ⊢ letstate control x : �reg ▷ Λ
′

Λ
′
= Λ[x ↦→ r] r fresh

Λ, (�, �) ⊢ letstate control dontgate x : �reg ▷ Λ
′

Λ, (�, �) ⊢ letstate xmem : �mem ▷ Λ

Λ
′
= Λ[x ↦→ (xmem, 0)]

Λ, (�, �) ⊢ letstate xmem : �mem with x ▷ Λ′

Λ, (�, �) ⊢ � ▷ Λ

Λ, (�, �) ⊢ defop ▷ Λ′ Λ
′, (�, �) ⊢ defops ▷ Λ′′

Λ, (�, �) ⊢ defop; defops ▷ Λ′

Λ
′
= Λ[xop ↦→ {[ ], e, �}]

Λ, (�, �) ⊢ defop xop {txt = e, sem = S} ▷ Λ′

Λ
′
= Λ[xop ↦→ {�� , e, �}]

Λ, (�, �) ⊢ defop xop x� : �base� {txt = e, sem = S} ▷ Λ′

Fig. 22. Cassiopea semantics for declarations.

(Machine Semantics)

Λbuiltin, ({}, {}) ⊢ decls ▷ Λ Λ ⊢ defops ▷ Λ′

⊢ decls; defops ▷ Λ′

Fig. 23. Cassiopea semantics for machines.

Note that there are two versions of the judgment for instructions, one specialized for no arguments/operands.
Instructions with no operands are declared as taking unit, but invoked with empty operands (not with unit) to
correspond to the way assembly languages normally work.
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(Program Semantics)

Λ(xop) = {[ ], _, �)} Λ ⊢ (�, �, S) ⇓ (� ′, � ′, skip, �)

Λ ⊢ (�, �, xop) → (�
′, � ′, �)

∀i,Λ ⊢ (�, �, e� ) ⇓ v� Λ(xop) = {x� , _, �} Λ
′
= Λ[∀�, x� ↦→ v� ] Λ

′ ⊢ (�, �, S) ⇓ (� ′, � ′, skip, �)

Λ ⊢ (�, �, xop e� ) → (�
′, � ′, �)

Λ ⊢ (�, �, inst) → (� ′, � ′, �)

Λ ⊢ (�, �, inst; insts, ·) → (� ′, � ′, insts, �) Λ ⊢ (�, �, inst; insts, 0x01) → (�, �, insts, ·)

0bC > 0x01

Λ ⊢ (�, �, inst; insts, 0bC) → (�, �, insts, 0bC b− 0x01) Λ ⊢ (�, �, _, ext) → (�, �, �, ext)

⊢ machine ▷ Λ Λ ⊢ (�, �, program, ·) →∗ (� ′, � ′, �, �)

machine ⊢ (�, �, program) → (� ′, � ′, �)

Fig. 24. Cassiopea semantics for programs.

We include a inal judgment of the form machine ⊢ (�, �, program) → (� ′, � ′) that puts the machine on the
left-hand side of the turnstile. It means that under a given machine the program maps �, � to � ′, � ′. There is a
limitation in the way we have formulated programs and the rules for programs, which is that there is no easy
way to represent failure. (Failure in this might represent triggering an exception and stopping execution, which
we do not model, or invoking “unpredictablež or “undeinedž behavior in the processor and transitioning to an
arbitrary unknown machine state.)

The intended behavior is that a program that fails during execution (that is, the body of one of its instructions
steps to crash) enters a state where no postcondition can evaluate to true. We have decided for the moment
that working this explicitly into the formalism would result in a lot of complication and obscuration without
providing any useful information.
Speciications. For speciications we need three judgments, shown in Figure 25: the irst two state what

the reg-modify and mem-modify clauses mean, respectively (they are properties on initial and inal register
and memory states), and the last one says what it means for a program to satisfy a speciication. Note that the
reg-modify and mem-modify rules as shown are slightly misleading, because the register and pointer list provided
in the input speciication is implicitly augmented with all registers and pointers mentioned in the postcondition
before it gets to this point.
Machine State Validity. As discussed above, we do not initialize the machine state while processing decla-

rations. Instead we treat the starting machine state as an input (e.g., in the inal judgment about programs) or
quantify it universally as in the speciication judgment. This requires that we have a predicate to reject machine
states that do not match the machine description. The validity judgment has the form Δ, Γ,Λ ⊢ � , shown in
Figure 26, and correspondingly for � (except without Λ) and then for �, � (both stores at once). This means that
the given stores match the given environments.
We use this with the typing environments that come from both the machine description and the additional

declarations arising from a speciication. In the case of registers we need access to Λ to handle the names of
registers. We do not use the Λ generated from the additional declarations in a speciication; this avoids circularity.
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(Speciication Semantics)

∀i,Λ ⊢ (�, �, xregi ) ⇓ r� ∀r ∉ {r� }, � (r) = � ′ (r)

Λ, �, �, � ′, � ′ ⊢ reg-modify : xregi

∀i,Λ ⊢ (�, �, (xmemi , e� )) ⇓ (xmemi , C� )

∀xmem,C, (xmem, C) ∉ {(xmemi , C� )}, � ((xmem, C)) = � ′ ((xmem, C))

Λ, �, �, � ′, � ′ ⊢ mem-modify : (xmemi , e� )

Λ, �, �, � ′, � ′ ⊢ �

Λ, �, �, � ′, � ′ ⊢ frame Λ, �, �, � ′, � ′ ⊢ frames

Λ, �, �, � ′, � ′ ⊢ frame frames

⊢ machine; decls ▷ Δ, Γ ⊢ machine ▷ Λ ∀�, �, (Δ, Γ,Λ ⊢ �, �) =⇒ Λ, (�, �) ⊢ decls ▷ Λ′ =⇒
Λ
′ ⊢ (�, �, pre) ⇓ true =⇒ ∀� ′, � ′, (Λ′ ⊢ (�, �, program, ·) →∗ (� ′, � ′, �, �)) =⇒

(Λ′ [EXTBRANCH ↦→ �] ⊢ (� ′, � ′, post) ⇓ true ∧ Λ
′, �, �, � ′, � ′ ⊢ frames)

machine, (decls; frame; pre; post) ⊢ program

Fig. 25. Cassiopea semantics for specifications.

(Machine State Validity)

(∀x, Δ, Γ ⊢ x : C reg ∧ Λ(x) = r) ⇔ (∃v, � (r) = v ∧ Δ, Γ ⊢ v : C bit)

Δ, Γ,Λ ⊢ �

∀xmem, Δ, Γ ⊢ xmem : C1 bit C2 len C3 ref⇔
(∀i ∈ {0,C1/8, . . . , (C2 − 1) ∗ C1/8}, ∃v, � (xmem, i) = (v,C1) ∧ Δ, Γ ⊢ v : C1 bit) ∧

(∀i ∉ {0,C1/8, . . . , (C2 − 1) ∗ C1/8}, Λ ⊢ (�, �, (xmem, i)) ⇓ fail)

Δ, Γ ⊢ �

Δ, Γ,Λ ⊢ � Δ, Γ ⊢ �

Δ, Γ,Λ ⊢ �, �

Fig. 26. Cassiopea machine state validity.

This is acceptable, because speciications are not allowed to deine new registers. For memory regions we need to
enumerate the valid ofsets for the region (note the literal 8 that hardwires 8-bit bytes) and check the cell width.
Branching. To handle branching, we allow statements to produce a branching state, which indicates the

number of instructions to skip over. Normally this is ·, which means none and has no efect; however, when
an instruction body produces something else we use it to branch. A nonzero bitvector results in skipping the
indicated number of instructions; the out-of-band additional value ext causes a branch to the external label. The
magic number used to select the external label appears only in one of the statement rules; beyond that point we
use ext explicitly.
The program rule in Figure 25 inserts the branch state produced by the program into Λ, where it provides a

value for the branchto predicate found in the postcondition. This allows speciications to enforce the external
branching behavior.
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A.5 Alewife Overview

This section describes Alewife, our speciication language for writing abstracted machine-independent speciica-
tions of low-level code.

Alewife speciications are abstractions of machine-level Cassiopea speciications; we say that Cassiopea con-
structs are lifted into Alewife and Alewife constructs are lowered into Cassiopea. Alewife is only for speciications,
so there are no statements, no updates, and no notion of instructions or programs. We refer to the single synthesis
problem in one Alewife speciication as a block.

Notation.We use the following metavariables:
x, y, z Program variables (binders)
r Registers (abstract)
C Integer constants (written in decimal)
0bC Bitvector constants (written in binary)
N Symbolic integer constants
� Types
v Values
e Expressions
i, j Rule-level integers
(Other constructions are referred to with longer names.)
As noted previously, Alewife types and expressions should be considered distinct from Cassiopea ones (even

where they correspond directly). We use the same letters in the hopes that this will cause less confusion (even in
the deinition of the translation) than picking an entirely diferent set of letters for Alewife.

Identiiers and Variables. In Alewife there are ive syntactic categories of identiiers: As in Cassiopea, xmem

name memory regions. xfunc name functions, and x� are type aliases. xmodule name Cassiopea lowering modules,
which are used to instantiate the abstract elements and conduct AlewifeśCassiopea translation for synthesis.
Other x are ordinary variables that range over other things, and may be presumed to not range over the above
reserved categories. All variables are immutable, in the sense that their values do not change once bound.
Symbolic Constants. In Alewife symbolic constants N are permitted to occur in some places where only

integer constants are allowed in the corresponding Cassiopea constructions. In particular, the bit sizes associated
with types (and the lengths of memory regions, which are functionally similar) may be given as symbolic values
x instead of integer constants. These must be bound to integer constants either directly in the Alewife spec, in
the Cassiopea lowering, or by the Cassiopea machine description. This allows the concrete sizes of bitvectors to
vary depending on the machine architecture.

Types. As in Cassiopea, Alewife types are divided syntactically into base types and others, shown in Figure 27.
The chief diference from Cassiopea is that bit widths (and the lengths of memory regions) can be symbolic
constants. However, an additional diference is that pointers (ptr) are distinguished from plain bitvectors (vec).
This is reasonably possible in Alewife, because it need not reason about the progression of values through
machine registers, only pre- and post-block machine states. Strings and unit are also absent, as they are not
needed for speciications.

Values and Expressions. The values in Alewife correspond directly to the values in Cassiopea as do operators
and most expressions, shown in Figure 27. Note that the width argument of fetch can be a symbolic size.

Declarations and Frames.Alewife declarations come in two forms: require and provide, shown in Figure 28.
The second form declares elements in the ordinary way, while the irst form declares an element that must be
provided by the Cassiopea lowerings or the Cassiopea machine description. In this case, the type is given, but not
the value. This functions as a form of import, and allows an Alewife ile to be checked on its own separately from
any particular machine description or Cassiopea lowerings. However, we do not currently deine or implement
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(Alewife Symbolic Constants)

N F C | x

(Alewife Types)

� F �base | �mem | �func

�base F int | bool | x�

| N vec | N ptr | N reg

| N label | �regs

�regs F N reg set

�mem F N1 bit N2 len N3 ref

�func F �base� → �base

(Alewife Values)

v F true | false | C | 0bC | (xmem, C)

| fail

(Alewife Operators)

unop F − | b− | ¬ | bnot

binop F = | ≠ | + | − | ∗ | / | < | <= | > | >=

| && | | | | ⊕

| >> | >>� |<< | band | bor | bxor

| b+ | b− | b∗ | b/

| b< | b<= | b> | b>=

| bs< | bs<= | bs> | bs>=

| ∪ | ∩ |⊆| \

(Alewife Expressions)

e F v | x

| xfunc (e)

| unop e

| e1 binop e2

| e[C] | e[C1, C2]

| let x : �base = e1 in e2

| if e1 then e2 else e3

| (xmem, e)

| ∗e | fetch(e,N )

| branchto

| {x1, . . . , x� }

| ∥e∥ | e1 ∈e2

Fig. 27. Alewife symbolic constants, types, values, operators and expressions.

such a check. Note that it is possible to require functions that implicitly depend on machine state or that depend
on machine state on somemachines and not others. Such functions can also depend on constants or other elements
that are not visible in the Alewife speciication at all. The lower-with declarations specify all lowering modules
that are used to compile this Alewife speciication into a Cassiopea speciication. The module name xmodule is
used to look up the Cassiopea lowering module to apply. The region declarations declare memory regions,
like the memory-typed letstate declarations in Cassiopea. (These are implicitly always provide, because, for
memory regions, the corresponding require declaration would be entirely equivalent, requiring duplication
in the Cassiopea lowering.) Note that the parameters of the region can be symbolic constants if abstraction is
needed.

Frame declarations in Alewife, annotated with reg-modify and mem-modify, are exactly the same as in Cassio-
pea. Because Alewife iles are machine-independent, the registers mentioned must be abstract and concretized
via the Cassiopea lowerings.
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(Alewife Declarations)

decls F � | decl; decls

decl F require type x�

| require value x : �base

| require func xfunc : �func

| provide type x� = �

| provide value x : �base = e

| provide func xfunc : x� : �base� → �base = e

| region xmem : �mem

| region xmem : �mem with x

| lower-with xmodule

| reg-modify : x�

| mem-modify : (xmemi , e� )

(Initial State Bindings)

block-lets F � | block-let; block-lets

block-let F let x : �base = e

(Alewife Speciications)

pre F e

post F e

spec F decls; block-lets; pre; post

Fig. 28. Alewife declarations, block-lets, and specifications.

Block-lets.While Alewife expressions include let-bindings, the scope of those let-bindings is conventional:
it lasts until the end of the expression. To refer to values taken from the initial state (that is, the machine
state of which the precondition must be true), we need a way to bind these values so their scope extends to
the postcondition. The block-lets serve this purpose in Alewife, shown in Figure 28, much like the additional
declarations seen in Cassiopea specs can. These are found within a block (because a block corresponds to a
synthesis problem, it is meaningful to associate pre- and post-block machine states with it), and the scope is the
entire block.

Speciications. A full speciication starts with a preamble of declarations, shown in Figure 28. It also includes
block-lets and the pre- and postconditions for the block. Common declarations can be shared with include.

A.6 Alewife Typing and Semantics

We do not provide (or implement) a full typechecking pass for Alewife. Instead, when we lower to Cassiopea,
we allow the Cassiopea typechecker to reject invalid results, which might be caused by invalid Alewife input
or by bad/mismatched Cassiopea lowering deinitions. The rules provided here are for doing scans over the
declarations suicient to make the translation to Cassiopea work and no more.
Environments. We retain the Cassiopea typing environments, Δ, Γ. We add an additional environment Σ,

which maps identiiers to integer constants. This is a projection of the Cassiopea execution environment Λ:
it holds mappings only for variables deined as integer constants and excludes everything else. We include a
separate set of rules for extracting these integer constants without doing a full Cassiopea execution. (Among
other things, this avoids involving machine state or the machine state stores.)
Translation. The translation (lowering) from Alewife to Cassiopea, deined in the next section, appears

cross-recursively in the rules in this section. Because Δ, Γ are Cassiopea environments, they map identiiers to
Cassiopea types, not Alewife ones. This means Alewife types must be lowered on the ly to update them correctly.
Integer Constant Extraction. The integer constant extraction rules do a simple pass over Cassiopea decla-

rations to extract the variables deined as integer constants, shown in Figure 29. These populate a substitution
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(Cassiopea Integer Constant Extraction)

Σ ⊢ � ▷ Σ

Σ ⊢ decl ▷ Σ
′

Σ
′ ⊢ decls ▷ Σ

′′

Σ ⊢ decl; decls ▷ Σ
′′

Σ ⊢ decls ▷ Σ
′

⊢ decls; defops ▷ Σ
′

Σ ⊢ type x� = �base ▷ Σ

Σ
′
= Σ[x ↦→ C]

Σ ⊢ let x : int = C ▷ Σ
′

e ≠ C

Σ ⊢ let x : �base = e ▷ Σ

Σ ⊢ def xfunc x� : �base� → �base = e ▷ Σ Σ ⊢ proc xproc x� : �base� → () = S ▷ Σ

Σ ⊢ letstate x : �reg ▷ Σ Σ ⊢ letstate xmem : �mem ▷ Σ

Σ ⊢ letstate xmem : �mem with x ▷ Σ Σ ⊢ let x .txt = e ▷ Σ

Fig. 29. Cassiopea integer constant extraction.

environment Σ that we use for lowering Alewife types containing symbolic constants. These rules are judgments
of the form Σ ⊢ decl ▷ Σ

′ or Σ ⊢ decls ▷ Σ
′, plus one of the form ⊢ machine ▷ Σ for a whole machine description.

Typing. The declaration typing rules are intended to accumulate types for all the declarations in an Alewife
speciication. They are applied concurrently with the Cassiopea declaration rules to the Alewife speciication, the
Cassiopea machine description, and the Cassiopea lowering. The declaration typing rules have judgments of the
form Δ, Γ, Σ ⊢ decl ▷ Δ′, Γ′, Σ′ and Δ, Γ, Σ ⊢ decls ▷ Δ′, Γ′, Σ′, shown in Figure 30. These mean that the declaration
or declarations update the type environment (and integer constant environment) as shown. Note that there is a
special-case rule for provide value for when the value is an integer constant; this enters the constant into Σ.
The integer constants are in turn used when lowering the types of memory regions, which can be seen in the last
two rules.

Block-lets. The rules for block-lets are efectively the same as the rules for declarations, shown in Figure 31.
The ways in which block-lets are special mostly do not apply here. Note however that even though we pass
through Σ (for consistency of the form of the rules) there is no rule for loading integer constants into Σ from
block-lets. Integer constants used in types and deined in the Alewife speciication should be deined with provide
value; block-lets are intended to provide access to machine state.

Speciications. The rule for the semantics of an entire speciication is large and complex. The conclusion
is that a given machine, lowering module, and Alewife speciication produce a inal translation output Ω. The
rules work by nondeterministically taking ixpoints over all the material included. decls is the combination of
all declarations found both in the initial speciication and all the included lowering modules, and frames is the
combination of all frame information (part of the declarations in Alewife; separated in Cassiopea). Similarly, the
inal set of environments Γ,Δ, Σ represent ixpoints produced by processing all the declarations.

In Figure 32, the irst premise expands the Alewife speciication as we will need to work with the components.
The next two premises generate initial environments: the Cassiopea typing environments induced by the machine
description, and its integer constants, and then we require that these are included in the inal environments. In
the ifth and sixth premises, we then require that the result of processing the declarations from the speciication
appears in the inal environments, and that the translation of these to Cassiopea is included in the inal declarations
and frame rules. Then for every lowering module requested by the speciication, we require that it be provided in
the input modules list and that its components appear in the inal declarations and frame rules. This is followed
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(Alewife Declaration Typing)

Δ, Γ, Σ ⊢ decl ▷ Δ′, Γ′, Σ′ Δ
′, Γ′, Σ ⊢ decls ▷ Δ′′, Γ′′, Σ′′

Δ, Γ, Σ ⊢ decl; decls ▷ Δ′′, Γ′′, Σ′′

Δ ⊢wf x�

Δ, Γ, Σ ⊢ require type x� ▷ Δ, Γ, Σ

Δ, Γ, Σ ⊢ AC⟦�base⟧ = � Γ(x) = �

Δ, Γ, Σ ⊢ require value x : �base ▷ Δ, Γ, Σ

Δ, Γ, Σ ⊢ AC⟦�func⟧ = � Γ(xfunc) = �

Δ, Γ, Σ ⊢ require func xfunc : �func ▷ Δ, Γ, Σ

Δ, Γ, Σ ⊢ AC⟦�⟧ = � ′ Δ ⊢wf �
′

Δ
′
= Δ[x� → � ′]

Δ, Γ, Σ ⊢ provide type x� = � ▷ Δ′, Γ, Σ

Δ, Γ ⊢ C : int Γ
′
= Γ [x ↦→ int] Σ

′
= Σ[x ↦→ C]

Δ, Γ, Σ ⊢ provide value x : int = C ▷ Δ, Γ′, Σ′

Δ, Γ, Σ ⊢ AC⟦�base⟧ = � Δ ⊢wf � e ≠ C Δ, Γ, Σ ⊢ AC⟦e⟧ = e′ Δ, Γ ⊢ e′ : � Γ
′
= Γ [x ↦→ �]

Δ, Γ, Σ ⊢ provide value x : �base = e ▷ Δ, Γ′, Σ

∀i, Δ, Γ, Σ ⊢ AC⟦�base�⟧ = �� ∧ Δ ⊢wf �� Δ, Γ, Σ ⊢ AC⟦�base⟧ = � Δ ⊢wf �
Δ, Γ, Σ ⊢ AC⟦e⟧ = e′ Γ

′
= Γ [∀i, x� ↦→ �� ] Δ, Γ′ ⊢ e′ : � Γ

′′
= Γ [xfunc ↦→ (x� : �� → �)]

Δ, Γ, Σ ⊢ provide func xfunc : x� : �base� → �base = e ▷ Δ, Γ′′, Σ

Δ, Γ, Σ ⊢ AC⟦N1 bit N2 len N3 ref⟧ = C1 bit C2 len C3 ref

Δ ⊢wf C1 bit C2 len C3 ref Γ
′
= Γ [xmem ↦→ C1 bit C2 len C3 ref]

Δ, Γ, Σ ⊢ region xmem : N1 bit N2 len N3 ref ▷ Δ, Γ′, Σ

Δ, Γ, Σ ⊢ AC⟦N1 bit N2 len N3 ref⟧ = C1 bit C2 len C3 ref

Δ ⊢wf C1 bit C2 len C3 ref Δ ⊢wf C3 label

Δ, Γ, Σ ⊢ AC⟦N3 label⟧ = C3 label Γ
′
= Γ [xmem ↦→ C1 bit C2 len C3 ref; x ↦→ C3 label]

Δ, Γ, Σ ⊢ region xmem : N1 bit N2 len N3 ref with x ▷ Δ, Γ′, Σ

Δ, Γ, Σ ⊢ lower-with xmodule ▷ Δ, Γ, Σ

Δ, Γ, Σ ⊢ AC⟦reg-modify : x�⟧ = reg-modify : x� Δ, Γ ⊢ reg-modify : x�

Δ, Γ, Σ ⊢ reg-modify : x� ▷ Δ, Γ, Σ

Δ, Γ, Σ ⊢ AC⟦mem-modify : (xmemi , e� )⟧ = mem-modify : (xmemi , e
′
� ) Δ, Γ ⊢ mem-modify : (xmemi , e

′
� )

Δ, Γ, Σ ⊢ mem-modify : (xmemi , e� ) ▷ Δ, Γ, Σ

Fig. 30. Alewife typing rules for declaration.
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(Alewife Speciication Typing)

Δ, Γ, Σ ⊢ � ▷ Δ, Γ, Σ

Δ, Γ, Σ ⊢ block-let ▷ Δ′, Γ′, Σ′ Δ
′, Γ′, Σ ⊢ block-lets ▷ Δ′′, Γ′′, Σ′′

Δ, Γ, Σ ⊢ block-let; block-lets ▷ Δ′′, Γ′′, Σ′′

Δ, Γ, Σ ⊢ AC⟦�base⟧ = � Δ ⊢wf � Δ, Γ, Σ ⊢ AC⟦e⟧ = e′ Δ, Γ ⊢ e′ : � Γ
′
= Γ [x ↦→ �]

Δ, Γ, Σ ⊢ let x : �base = e ▷ Δ, Γ′, Σ

Δ, Γ, Σ ⊢ decls ▷ Δ′, Γ′, Σ′ Δ
′, Γ′, Σ′ ⊢ block-lets ▷ Δ′′, Γ′′, Σ′′ Δ

′′, Γ′′, Σ ⊢ AC⟦pre⟧ = pre′

Δ
′′, Γ′′, Σ ⊢ AC⟦post⟧ = post′ Δ

′′, Γ′′ ⊢ pre′ : bool Δ
′′, Γ′′ ⊢ post′ : bool

Δ, Γ, Σ ⊢ decls; block-lets; pre; post ▷ Δ′′, Γ′′, Σ′′

Fig. 31. Alewife typing rules for specifications.

(Alewife Speciication Semantics)

spec = declsale; block-lets; pre; post

⊢ machine ▷ Δ0, Γ0 ⊢ machine ▷ Σ0 (Δ0 ⊆ Δ) ∧ (Γ0 ⊆ Γ) ∧ (Σ0 ⊆ Σ)
Δ, Γ, Σ ⊢ declsale ▷ Δ, Γ, Σ Δ, Γ, Σ ⊢ AC⟦declsale⟧ ⊆ decls; frames

(∀xmodule, lower-with xmodule ∈ declsale =⇒
module xmodule { declslower ; frameslower } ∈ modules ∧ declslower ⊆ decls ∧ frameslower ⊆ frames)

Δ, Γ ⊢ decls ▷ Δ, Γ Σ ⊢ decls ▷ Σ Δ, Γ, Σ ⊢ block-lets ▷ Δ, Γ, Σ Δ, Γ, Σ ⊢ AC⟦block-lets⟧ ⊆ decls

Δ, Γ, Σ ⊢ AC⟦pre⟧ = pre′ Δ, Γ, Σ ⊢ AC⟦post⟧ = post′ Ω = decls; frames; pre′; post′

machine,modules, spec ▷ Ω

Fig. 32. Alewife semantics for specifications.

by two more rules to ensure that these results are represented in the inal environments. Later, we include the
block-let material in the inal environments, include its lowered form in the inal declaration list (block-lets lower
to declarations), bind the lowerings of the pre- and postconditions, and deine the output.
The ixpoint-based evaluation strategy for declarations is required, because the Alewife declarations rely on

the Cassiopea lowering ile (most notably for resolving symbolic constants), but the Cassiopea lowering ile
is in turn also speciically allowed to refer to objects declared by the Alewife speciication, such as memory
regions. In the implementation this circularity is resolved by lifting both the Cassiopea and Alewife declarations
(and block-lets) into a common representation and topologically sorting them based on identiier references.
(Genuinely circular references among identiiers are prohibited.) From this point, they can be handled in order in
a more conventional way.
Complete Output. Note that the output includes the declarations from the Cassiopea lowering modules

(each declslower ). Apart from symbolic constants, we do not substitute the deinitions of the lowering elements, as
that would greatly complicate things, especially with functions; instead we include the deinitions and let the
translation refer to them. In fact, because of the declaration ordering issues, in the implementation the lowering
declarations and translated Alewife declarations can be arbitrarily interleaved in the output.

Note furthermore that it would not be suicient to include only the lowering declarations explicitly imported
with require declarations, as those may refer freely to other things declared in the lowering module that the
Alewife speciication itself may have no cognizance of whatsoever.
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Alewife ś Cassiopea Type Translation

Δ, Γ, Σ ⊢ AC⟦N⟧ =





C N = C

Σ(x) N = x ∧ x ∈ Σ

⊥ N = x ∧ x ∉ Σ

Δ, Γ, Σ ⊢ AC⟦x�⟧ =

{
Δ(x� ) x� ∈ Δ

⊥ x� ∉ Δ

AC⟦int⟧ = int AC⟦bool⟧ = bool

AC⟦N vec⟧ = AC⟦N⟧ bit AC⟦N ptr⟧ = AC⟦N⟧ bit

AC⟦N reg⟧ = AC⟦N⟧ reg AC⟦N reg set⟧ = AC⟦N⟧ reg set

AC⟦N1 bit N2 len N3 ref⟧ = AC⟦N1⟧ bit AC⟦N2⟧ len AC⟦N3⟧ ref

AC⟦�base� → �base⟧ = AC⟦�base�⟧ → AC⟦�base⟧

Fig. 33. Alewife ś Cassiopea type translation.

A.7 Lowering Alewife

The semantics of an Alewife speciication depend on material taken from a Cassiopea mapping and machine
description. This does not preclude deining a semantics for Alewife in terms of that material or even some
abstracted concept of what any such Cassiopea material might be. However, doing so is complicated (as can be
seen from the material in the previous section, which does not even attempt to handle expression evaluation) and
not perhaps very illuminating or rewarding.
So instead, we write only enough typing rules to prepare material for writing a translation (lowering) to

Cassiopea, and then apply the Cassiopea typing to the lowered material. This gives Alewife a semantics in terms
of the Cassiopea semantics. The translated material goes into the Cassiopea typing environments Δ, Γ, and as
discussed in the previous section, we also maintain an additional environment Σ of integer constants used for
substituting symbolic constants in types.
This section deines the translation. AC⟦�⟧ deines the Cassiopea lowering of an Alewife element �. We

make the translation polymorphic over the various kinds of element; that is, AC⟦�⟧ is the translation of a type
(shown in Figure 33), AC⟦e⟧ is the translation of an expression, etc. Some of the translation rules rely on the
environments; these are written Δ, Γ, Σ ⊢ AC⟦�⟧ (shown in Figure 34).

Some of the translation rules produce⊥. If these are reached, the translation fails; this can happen if the Alewife
spec was malformed and, potentially, if the mapping module failed to declare elements that were expected of it or
declared them in an incompatible or inconsistent way. The rules in the previous section exclude some of these
cases, but we are not (yet) prepared to argue that they rule out all translation-time failures.
Notice that the translations for require declarations are empty, because the declarations from the mapping

module are output along with the translated Alewife speciication.
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Alewife ś Cassiopea Expression Translation

Δ, Γ, Σ ⊢ AC⟦x⟧ =

{
x x ∈ Γ

⊥ x ∉ Γ
Δ, Γ, Σ ⊢ AC⟦xfunc (e)⟧ =

{
xfunc (AC⟦e⟧) xfunc ∈ Γ

⊥ xfunc ∉ Γ

AC⟦true⟧ = true AC⟦false⟧ = false

AC⟦C⟧ = C AC⟦0bC⟧ = 0bC

AC⟦unop e⟧ = unop AC⟦e⟧ AC⟦e1 binop e2⟧ = AC⟦e1⟧ binop AC⟦e2⟧

AC⟦e[C]⟧ = AC⟦e⟧[C] AC⟦e[C1, C2]⟧ = AC⟦e⟧[C1, C2]

AC⟦let x : �base = e1 in e2⟧ = let x : AC⟦�base⟧ = AC⟦e1⟧ inAC⟦e2⟧

AC⟦if e1 then e2 else e3⟧ = ifAC⟦e1⟧ thenAC⟦e2⟧ elseAC⟦e3⟧

Δ, Γ, Σ ⊢ AC⟦(xmem, e)⟧ =

{
(xmem, AC⟦e⟧) xmem ∈ Γ

⊥ xmem ∉ Γ

AC⟦fail⟧ = fail

AC⟦ ∗e⟧ = ∗AC⟦e⟧ AC⟦fetch(e,N )⟧ = fetch(AC⟦e⟧,AC⟦N⟧)

AC⟦branchto⟧ = branchto AC⟦{x1, . . . , x� }⟧ = {AC⟦x1⟧, . . . ,AC⟦x�⟧}

AC⟦∥e∥⟧ = ∥AC⟦e⟧∥ AC⟦e1 ∈e2⟧ = AC⟦e1⟧ ∈AC⟦e2⟧

Alewife ś Cassiopea Block-Lets Translation

AC⟦let x : �base = e⟧ = let x : AC⟦�base⟧ = AC⟦e⟧

Alewife ś Cassiopea Declaration Translation

Δ, Γ, Σ ⊢ AC⟦require type x�⟧ =

{
� x� ∈ Δ

⊥ x� ∉ Δ

Δ, Γ, Σ ⊢ AC⟦require value x : �base⟧ =

{
� x ∈ Γ

⊥ x ∉ Γ

Δ, Γ, Σ ⊢ AC⟦require func xfunc : �func⟧ =

{
� xfunc ∈ Γ

⊥ xfunc ∉ Σ

AC⟦provide type x� = �⟧ = type x� = AC⟦�⟧

AC⟦provide value x : �base = e⟧ = let x : AC⟦�base⟧ = AC⟦e⟧

AC⟦provide func xfunc : x� : �base� → �base = e⟧ = def xfunc x� : AC⟦�base�⟧ → AC⟦�base⟧

= AC⟦e⟧

AC⟦region xmem : �mem⟧ = letstate xmem : AC⟦�mem⟧

AC⟦region xmem : �mem with x⟧ = letstate xmem : AC⟦�mem⟧ with x

AC⟦lower-with xmodule⟧ = �

AC⟦reg-modify : x�⟧ = reg-modify : AC⟦x�⟧

AC⟦mem-modify : (xmemi , e� )⟧ = mem-modify : (AC⟦xmemi⟧, AC⟦e�⟧)

Fig. 34. Alewife ś Cassiopea translation.
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